Loading…

A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction

When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the “smaller is stronger” phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects,...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2008-02, Vol.56 (3), p.602-608
Main Authors: Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., Nix, W.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903
cites cdi_FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903
container_end_page 608
container_issue 3
container_start_page 602
container_title Acta materialia
container_volume 56
creator Budiman, A.S.
Han, S.M.
Greer, J.R.
Tamura, N.
Patel, J.R.
Nix, W.D.
description When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the “smaller is stronger” phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects, often involving strain gradients. Here we report on a search for strain gradients as a possible source of strength for single-crystal submicron pillars of gold subjected to uniform compression, using a submicron white-beam (Laue) X-ray diffraction technique. We have found, both before and after uniaxial compression, no evidence of either significant lattice curvature or subgrain structure. This is true even after 35% strain and a high flow stress of 300 MPa were achieved during deformation. These observations suggest that plasticity here is not controlled by strain gradients or substructure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available.
doi_str_mv 10.1016/j.actamat.2007.10.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31889539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645407006994</els_id><sourcerecordid>31889539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEEqXtIyB5A2KTwbfEzgqNKi6VKrEpUneWYx93PEqcwSepOi_BM-MwI5awsa3j7z-3v6reMrphlLUf9xvrZjvaecMpVSW2oYK9qC6YVqLmshEvy1s0Xd3KRr6u3iDuKWVcSXpR_doSBJvdjoQpE3iKHpIDMgWCc7YxkcdsfYQ0k53N5S-mR1Ki24Xg0o_R5SmRQxwGm5EsyUMuZ7TP0Q7ETeMhA2IsyIKrEI_J7fI0r6KHOtsj-ZPBxxByGaGAV9WrYAeE6_N9Wf348vn-5lt99_3r7c32rnZSMFaHXrQtpaCV4572Dec9t01vW91JF6hylDaeK-Z5YFpo4ABOtlSr4CWHjorL6v0p7yFPPxfA2YwRHZQ5EkwLGsG07hrRFfDDP0FGNWddy5UqaHNCy0iIGYI55DjafCyQWY0ye3M2yqxGreFiVNG9O5ew6OxQVpFcxL_iglLF5NrKpxMHZTFPEbJBF1e3fMzgZuOn-J9KvwHX8K5L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082196277</pqid></control><display><type>article</type><title>A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction</title><source>ScienceDirect Freedom Collection</source><creator>Budiman, A.S. ; Han, S.M. ; Greer, J.R. ; Tamura, N. ; Patel, J.R. ; Nix, W.D.</creator><creatorcontrib>Budiman, A.S. ; Han, S.M. ; Greer, J.R. ; Tamura, N. ; Patel, J.R. ; Nix, W.D.</creatorcontrib><description>When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the “smaller is stronger” phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects, often involving strain gradients. Here we report on a search for strain gradients as a possible source of strength for single-crystal submicron pillars of gold subjected to uniform compression, using a submicron white-beam (Laue) X-ray diffraction technique. We have found, both before and after uniaxial compression, no evidence of either significant lattice curvature or subgrain structure. This is true even after 35% strain and a high flow stress of 300 MPa were achieved during deformation. These observations suggest that plasticity here is not controlled by strain gradients or substructure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2007.10.031</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Compressing ; Curvature ; Dislocation ; Dislocations ; Exact sciences and technology ; Gold ; Materials with reduced dimensions ; Metals. Metallurgy ; Pillars ; Searching ; Size effects ; Strain ; Synchrotron radiation ; X-ray diffraction (XRD) ; X-rays</subject><ispartof>Acta materialia, 2008-02, Vol.56 (3), p.602-608</ispartof><rights>2007 Acta Materialia Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903</citedby><cites>FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20007149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Budiman, A.S.</creatorcontrib><creatorcontrib>Han, S.M.</creatorcontrib><creatorcontrib>Greer, J.R.</creatorcontrib><creatorcontrib>Tamura, N.</creatorcontrib><creatorcontrib>Patel, J.R.</creatorcontrib><creatorcontrib>Nix, W.D.</creatorcontrib><title>A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction</title><title>Acta materialia</title><description>When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the “smaller is stronger” phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects, often involving strain gradients. Here we report on a search for strain gradients as a possible source of strength for single-crystal submicron pillars of gold subjected to uniform compression, using a submicron white-beam (Laue) X-ray diffraction technique. We have found, both before and after uniaxial compression, no evidence of either significant lattice curvature or subgrain structure. This is true even after 35% strain and a high flow stress of 300 MPa were achieved during deformation. These observations suggest that plasticity here is not controlled by strain gradients or substructure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available.</description><subject>Applied sciences</subject><subject>Compressing</subject><subject>Curvature</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Materials with reduced dimensions</subject><subject>Metals. Metallurgy</subject><subject>Pillars</subject><subject>Searching</subject><subject>Size effects</subject><subject>Strain</subject><subject>Synchrotron radiation</subject><subject>X-ray diffraction (XRD)</subject><subject>X-rays</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhiMEEqXtIyB5A2KTwbfEzgqNKi6VKrEpUneWYx93PEqcwSepOi_BM-MwI5awsa3j7z-3v6reMrphlLUf9xvrZjvaecMpVSW2oYK9qC6YVqLmshEvy1s0Xd3KRr6u3iDuKWVcSXpR_doSBJvdjoQpE3iKHpIDMgWCc7YxkcdsfYQ0k53N5S-mR1Ki24Xg0o_R5SmRQxwGm5EsyUMuZ7TP0Q7ETeMhA2IsyIKrEI_J7fI0r6KHOtsj-ZPBxxByGaGAV9WrYAeE6_N9Wf348vn-5lt99_3r7c32rnZSMFaHXrQtpaCV4572Dec9t01vW91JF6hylDaeK-Z5YFpo4ABOtlSr4CWHjorL6v0p7yFPPxfA2YwRHZQ5EkwLGsG07hrRFfDDP0FGNWddy5UqaHNCy0iIGYI55DjafCyQWY0ye3M2yqxGreFiVNG9O5ew6OxQVpFcxL_iglLF5NrKpxMHZTFPEbJBF1e3fMzgZuOn-J9KvwHX8K5L</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Budiman, A.S.</creator><creator>Han, S.M.</creator><creator>Greer, J.R.</creator><creator>Tamura, N.</creator><creator>Patel, J.R.</creator><creator>Nix, W.D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200802</creationdate><title>A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction</title><author>Budiman, A.S. ; Han, S.M. ; Greer, J.R. ; Tamura, N. ; Patel, J.R. ; Nix, W.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Compressing</topic><topic>Curvature</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Materials with reduced dimensions</topic><topic>Metals. Metallurgy</topic><topic>Pillars</topic><topic>Searching</topic><topic>Size effects</topic><topic>Strain</topic><topic>Synchrotron radiation</topic><topic>X-ray diffraction (XRD)</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budiman, A.S.</creatorcontrib><creatorcontrib>Han, S.M.</creatorcontrib><creatorcontrib>Greer, J.R.</creatorcontrib><creatorcontrib>Tamura, N.</creatorcontrib><creatorcontrib>Patel, J.R.</creatorcontrib><creatorcontrib>Nix, W.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budiman, A.S.</au><au>Han, S.M.</au><au>Greer, J.R.</au><au>Tamura, N.</au><au>Patel, J.R.</au><au>Nix, W.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction</atitle><jtitle>Acta materialia</jtitle><date>2008-02</date><risdate>2008</risdate><volume>56</volume><issue>3</issue><spage>602</spage><epage>608</epage><pages>602-608</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the “smaller is stronger” phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects, often involving strain gradients. Here we report on a search for strain gradients as a possible source of strength for single-crystal submicron pillars of gold subjected to uniform compression, using a submicron white-beam (Laue) X-ray diffraction technique. We have found, both before and after uniaxial compression, no evidence of either significant lattice curvature or subgrain structure. This is true even after 35% strain and a high flow stress of 300 MPa were achieved during deformation. These observations suggest that plasticity here is not controlled by strain gradients or substructure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2007.10.031</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2008-02, Vol.56 (3), p.602-608
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_31889539
source ScienceDirect Freedom Collection
subjects Applied sciences
Compressing
Curvature
Dislocation
Dislocations
Exact sciences and technology
Gold
Materials with reduced dimensions
Metals. Metallurgy
Pillars
Searching
Size effects
Strain
Synchrotron radiation
X-ray diffraction (XRD)
X-rays
title A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20search%20for%20evidence%20of%20strain%20gradient%20hardening%20in%20Au%20submicron%20pillars%20under%20uniaxial%20compression%20using%20synchrotron%20X-ray%20microdiffraction&rft.jtitle=Acta%20materialia&rft.au=Budiman,%20A.S.&rft.date=2008-02&rft.volume=56&rft.issue=3&rft.spage=602&rft.epage=608&rft.pages=602-608&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2007.10.031&rft_dat=%3Cproquest_cross%3E31889539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4311-fb36600e87c2d0b522b2a5ba6894cf07c005d271d2f1838e2eec46087fd42e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082196277&rft_id=info:pmid/&rfr_iscdi=true