Loading…

The Peltier effect

Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ 0 T ln(1+ T Θ V ), where ɛ 0 is the ‘...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2008, Vol.91 (1), p.311-315
Main Author: Drebushchak, V. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303
cites cdi_FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303
container_end_page 315
container_issue 1
container_start_page 311
container_title Journal of thermal analysis and calorimetry
container_volume 91
creator Drebushchak, V. A.
description Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ 0 T ln(1+ T Θ V ), where ɛ 0 is the ‘universal’ sensitivity of thermocouples and Θ V is the characteristic temperature of a particular thermocouple. The Peltier and Seebeck coefficients derived from the new thermodynamic model were shown not to hold the Thomson relation exactly, but only in the low-temperature limit.
doi_str_mv 10.1007/s10973-007-8336-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31898779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31898779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303</originalsourceid><addsrcrecordid>eNp9kL9PwzAQhS0EElXpwsbWic1wZ8e_RlQBRaoEQ5mtND5DUJoUOxn470kUZqb7hvc96R5jNwh3CGDuM4Izko_IrZSauzO2QGUtF07o85HlyBoVXLJVzvUBBIJ2yroFu95_0vqNmr6mtKYYqeqv2EUsm0yrv7tk70-P-82W716fXzYPO15JdD0PRZQ2KKfAoEPlyEBJRbQKQBeExkSlRdTBmCBj0IJABIwH5cqSCCXIJbude0-p-x4o9_5Y54qapmypG7KXaJ01xo1BnINV6nJOFP0p1ccy_XgEPw3g5wH8hNMAfnLE7OQx235Q8l_dkNrxn3-kXwE2WyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31898779</pqid></control><display><type>article</type><title>The Peltier effect</title><source>Springer Nature</source><creator>Drebushchak, V. A.</creator><creatorcontrib>Drebushchak, V. A.</creatorcontrib><description>Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ 0 T ln(1+ T Θ V ), where ɛ 0 is the ‘universal’ sensitivity of thermocouples and Θ V is the characteristic temperature of a particular thermocouple. The Peltier and Seebeck coefficients derived from the new thermodynamic model were shown not to hold the Thomson relation exactly, but only in the low-temperature limit.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-007-8336-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Regular Papers</subject><ispartof>Journal of thermal analysis and calorimetry, 2008, Vol.91 (1), p.311-315</ispartof><rights>Springer Science+Business Media LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303</citedby><cites>FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Drebushchak, V. A.</creatorcontrib><title>The Peltier effect</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ 0 T ln(1+ T Θ V ), where ɛ 0 is the ‘universal’ sensitivity of thermocouples and Θ V is the characteristic temperature of a particular thermocouple. The Peltier and Seebeck coefficients derived from the new thermodynamic model were shown not to hold the Thomson relation exactly, but only in the low-temperature limit.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Regular Papers</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kL9PwzAQhS0EElXpwsbWic1wZ8e_RlQBRaoEQ5mtND5DUJoUOxn470kUZqb7hvc96R5jNwh3CGDuM4Izko_IrZSauzO2QGUtF07o85HlyBoVXLJVzvUBBIJ2yroFu95_0vqNmr6mtKYYqeqv2EUsm0yrv7tk70-P-82W716fXzYPO15JdD0PRZQ2KKfAoEPlyEBJRbQKQBeExkSlRdTBmCBj0IJABIwH5cqSCCXIJbude0-p-x4o9_5Y54qapmypG7KXaJ01xo1BnINV6nJOFP0p1ccy_XgEPw3g5wH8hNMAfnLE7OQx235Q8l_dkNrxn3-kXwE2WyY</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Drebushchak, V. A.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2008</creationdate><title>The Peltier effect</title><author>Drebushchak, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Regular Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drebushchak, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drebushchak, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Peltier effect</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2008</date><risdate>2008</risdate><volume>91</volume><issue>1</issue><spage>311</spage><epage>315</epage><pages>311-315</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ 0 T ln(1+ T Θ V ), where ɛ 0 is the ‘universal’ sensitivity of thermocouples and Θ V is the characteristic temperature of a particular thermocouple. The Peltier and Seebeck coefficients derived from the new thermodynamic model were shown not to hold the Thomson relation exactly, but only in the low-temperature limit.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-007-8336-9</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2008, Vol.91 (1), p.311-315
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_proquest_miscellaneous_31898779
source Springer Nature
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Inorganic Chemistry
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Regular Papers
title The Peltier effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Peltier%20effect&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Drebushchak,%20V.%20A.&rft.date=2008&rft.volume=91&rft.issue=1&rft.spage=311&rft.epage=315&rft.pages=311-315&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-007-8336-9&rft_dat=%3Cproquest_cross%3E31898779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d4f38d5950719159e70ae4f850064e177f562f6d77d3fd62e02d1fb59aaee1303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31898779&rft_id=info:pmid/&rfr_iscdi=true