Loading…
Topology optimization of electrostatically actuated microsystems
This study addresses the design of electrostatically actuated microelectromechanical systems by topology optimization. The layout of the structure and the electrode are simultaneously optimized. A novel, continuous, material-based description of the interface between the structural and electrostatic...
Saved in:
Published in: | Structural and multidisciplinary optimization 2005-11, Vol.30 (5), p.342-359 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study addresses the design of electrostatically actuated microelectromechanical systems by topology optimization. The layout of the structure and the electrode are simultaneously optimized. A novel, continuous, material-based description of the interface between the structural and electrostatic domains is presented that allows the optimization of the interface topology. The resulting topology optimization problem is solved by a gradient-based algorithm. The electromechanical system response is determined by a coupled high-fidelity finite element model and a staggered solution procedure. An adjoint formulation of the coupled electromechanical design sensitivity analysis is introduced, and the global sensitivity equations are solved by a staggered method. The proposed topology optimization method is applied to the design of mechanisms. The optimization results show the significant advantages of varying the interface topology and the layout of the electrode versus conventional approaches optimizing the structural layout only. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-005-0531-3 |