Loading…

Characterization of hydrogenated nanocrystalline silicon thin films prepared with various negative direct current biases

Hydrogenated nanocrystalline Si (nc-Si:H) thin films were prepared by plasma- enhanced chemical vapor deposition (PECVD). The films were deposited with a radio-frequency power of 100 W, while substrates were exposed to direct current (dc) biases in the range from 0 to −400 V. The effects of dc bias...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2008-03, Vol.23 (3), p.790-797
Main Authors: Shim, Jae-Hyun, Cho, Nam-Hee, Lee, El-Hang, Lee, Han-Sup
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogenated nanocrystalline Si (nc-Si:H) thin films were prepared by plasma- enhanced chemical vapor deposition (PECVD). The films were deposited with a radio-frequency power of 100 W, while substrates were exposed to direct current (dc) biases in the range from 0 to −400 V. The effects of dc bias on the formation of nanoscale Si crystallites in the films and on their optical characteristics were investigated. The size of the Si crystallites in the films ranges from ∼1.9 to ∼4.1 nm. The relative fraction of the crystallites in the films reached up to ∼56.5% when a dc bias of −400 V was applied. Based on the variation in the structural, chemical, and optical features of the films with dc bias voltages, a model for the formation of nanostructures of the nc-Si:H films prepared by PECVD was suggested. This model can be utilized to understand the evolution in the size and relative fraction of the nanocrystallites as well as the amorphous matrix in the nc-Si:H films.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2008.0092