Loading…

GaAs based micromachined thermal converter for gas sensors

The micromachining technology and an electro-thermo-mechanical performance analysis of GaAs based micromachined thermal converter (MTC) device to be designed for metal oxide gas sensors are presented. MTC device introduced exhibits a low power consumption due to by high thermal resistance values ( R...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2008-03, Vol.142 (1), p.147-152
Main Authors: Lalinský, T., Držík, M., Jakovenko, J., Vanko, G., Mozolová, Ž., Haščík, Š., Chlpík, J., Hotový, I., Řeháček, V., Kostič, I., Matay, L., Husák, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The micromachining technology and an electro-thermo-mechanical performance analysis of GaAs based micromachined thermal converter (MTC) device to be designed for metal oxide gas sensors are presented. MTC device introduced exhibits a low power consumption due to by high thermal resistance values ( R th = 15–21 K/mW), uniform temperature distribution, a fast temperature time response ( τ ∼ 1.5–1.8 ms), and good mechanical integrity and thermal stability. It is also fully compatible with the GaAs HEMT based signal-processing and controlling electronics to be monolithically integrated with the gas sensors. The both a simple analytical and three-dimensional thermal modeling of the MTC device was performed. It supported the high electro-thermal conversion efficiency and fast temperature time response of the MEMS device as evaluated by the experiments.
ISSN:0924-4247
1873-3069
DOI:10.1016/j.sna.2007.05.014