Loading…

Artificial neural network models of the rumen fermentation pattern in dairy cattle

The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2008-03, Vol.60 (2), p.226-238
Main Authors: Craninx, M., Fievez, V., Vlaeminck, B., De Baets, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3
cites cdi_FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3
container_end_page 238
container_issue 2
container_start_page 226
container_title Computers and electronics in agriculture
container_volume 60
creator Craninx, M.
Fievez, V.
Vlaeminck, B.
De Baets, B.
description The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.
doi_str_mv 10.1016/j.compag.2007.08.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32122465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169907001810</els_id><sourcerecordid>32122465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq0KpG6Bf1AJX9pbgsdONs6lEkL0Q0JConC2HGdCvSTxYntB_PvONohjOb229cz41cPYZxAlCFifbUoXpq29L6UQTSl0KUT9ga1AN7JoQDQHbEWYLmDdth_Zp5Q2gu6tblbs5jxmP3jn7chn3MV_kZ9DfOBT6HFMPAw8_0EedxPOfMBIkW32YeZbmzPGmfuZ99bHF-7oYcRjdjjYMeHJax6xu--Xtxc_i6vrH78uzq8KV0mZi1q1fUsdGjrovlMolYOudroDqwAdtFWnm77WiL0WUnagNYIVBIFWrVNH7OuydxvD4w5TNpNPDsfRzhh2ySgJUlbr-l0QWkXeKklgtYAuhpQiDmYb_WTjiwFh9qbNxiymzd60EdqQaRr78rrfJmfHIdrZ-fQ2S2jVCKWIO124wQZj7yMxd7-lAPpdr_ddifi2ECQenzxGk5zH2WHvI7ps-uD_X-Uvts2fBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19300742</pqid></control><display><type>article</type><title>Artificial neural network models of the rumen fermentation pattern in dairy cattle</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Craninx, M. ; Fievez, V. ; Vlaeminck, B. ; De Baets, B.</creator><creatorcontrib>Craninx, M. ; Fievez, V. ; Vlaeminck, B. ; De Baets, B.</creatorcontrib><description>The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2007.08.005</identifier><identifier>CODEN: CEAGE6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; Animal productions ; Artificial neural networks ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; milk fat ; Milk fatty acids ; neural networks ; Prediction ; Rumen fermentation ; Terrestrial animal productions ; Vertebrates ; Volatile fatty acids</subject><ispartof>Computers and electronics in agriculture, 2008-03, Vol.60 (2), p.226-238</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3</citedby><cites>FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20047033$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Craninx, M.</creatorcontrib><creatorcontrib>Fievez, V.</creatorcontrib><creatorcontrib>Vlaeminck, B.</creatorcontrib><creatorcontrib>De Baets, B.</creatorcontrib><title>Artificial neural network models of the rumen fermentation pattern in dairy cattle</title><title>Computers and electronics in agriculture</title><description>The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Animal productions</subject><subject>Artificial neural networks</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>milk fat</subject><subject>Milk fatty acids</subject><subject>neural networks</subject><subject>Prediction</subject><subject>Rumen fermentation</subject><subject>Terrestrial animal productions</subject><subject>Vertebrates</subject><subject>Volatile fatty acids</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq0KpG6Bf1AJX9pbgsdONs6lEkL0Q0JConC2HGdCvSTxYntB_PvONohjOb229cz41cPYZxAlCFifbUoXpq29L6UQTSl0KUT9ga1AN7JoQDQHbEWYLmDdth_Zp5Q2gu6tblbs5jxmP3jn7chn3MV_kZ9DfOBT6HFMPAw8_0EedxPOfMBIkW32YeZbmzPGmfuZ99bHF-7oYcRjdjjYMeHJax6xu--Xtxc_i6vrH78uzq8KV0mZi1q1fUsdGjrovlMolYOudroDqwAdtFWnm77WiL0WUnagNYIVBIFWrVNH7OuydxvD4w5TNpNPDsfRzhh2ySgJUlbr-l0QWkXeKklgtYAuhpQiDmYb_WTjiwFh9qbNxiymzd60EdqQaRr78rrfJmfHIdrZ-fQ2S2jVCKWIO124wQZj7yMxd7-lAPpdr_ddifi2ECQenzxGk5zH2WHvI7ps-uD_X-Uvts2fBw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Craninx, M.</creator><creator>Fievez, V.</creator><creator>Vlaeminck, B.</creator><creator>De Baets, B.</creator><general>Elsevier B.V</general><general>[Amsterdam]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Artificial neural network models of the rumen fermentation pattern in dairy cattle</title><author>Craninx, M. ; Fievez, V. ; Vlaeminck, B. ; De Baets, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Animal productions</topic><topic>Artificial neural networks</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>milk fat</topic><topic>Milk fatty acids</topic><topic>neural networks</topic><topic>Prediction</topic><topic>Rumen fermentation</topic><topic>Terrestrial animal productions</topic><topic>Vertebrates</topic><topic>Volatile fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craninx, M.</creatorcontrib><creatorcontrib>Fievez, V.</creatorcontrib><creatorcontrib>Vlaeminck, B.</creatorcontrib><creatorcontrib>De Baets, B.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craninx, M.</au><au>Fievez, V.</au><au>Vlaeminck, B.</au><au>De Baets, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network models of the rumen fermentation pattern in dairy cattle</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>60</volume><issue>2</issue><spage>226</spage><epage>238</epage><pages>226-238</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><coden>CEAGE6</coden><abstract>The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2007.08.005</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2008-03, Vol.60 (2), p.226-238
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_miscellaneous_32122465
source ScienceDirect Freedom Collection 2022-2024
subjects Agronomy. Soil science and plant productions
Animal productions
Artificial neural networks
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
milk fat
Milk fatty acids
neural networks
Prediction
Rumen fermentation
Terrestrial animal productions
Vertebrates
Volatile fatty acids
title Artificial neural network models of the rumen fermentation pattern in dairy cattle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20models%20of%20the%20rumen%20fermentation%20pattern%20in%20dairy%20cattle&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Craninx,%20M.&rft.date=2008-03-01&rft.volume=60&rft.issue=2&rft.spage=226&rft.epage=238&rft.pages=226-238&rft.issn=0168-1699&rft.eissn=1872-7107&rft.coden=CEAGE6&rft_id=info:doi/10.1016/j.compag.2007.08.005&rft_dat=%3Cproquest_cross%3E32122465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-539d998775398db3e23c1b5c8b1a31ec194b87d58eed8022b188e1a0c1b1839c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19300742&rft_id=info:pmid/&rfr_iscdi=true