Loading…

A simple generalized neuro-fuzzy operator for efficient removal of impulse noise from highly corrupted digital images

A generalized neuro-fuzzy (NF) operator for removing impulse noise from highly corrupted digital images is presented. The fundamental building block of the operator is a simple 3-input 1-output NF filter. The operator is constructed by combining a desired number of NF filters with a postprocessor. E...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electronics and communications 2005-03, Vol.59 (1), p.1-7
Main Authors: Yuksel, M Emin, Basturk, Alper
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generalized neuro-fuzzy (NF) operator for removing impulse noise from highly corrupted digital images is presented. The fundamental building block of the operator is a simple 3-input 1-output NF filter. The operator is constructed by combining a desired number of NF filters with a postprocessor. Each NF filter in the structure evaluates a different pixel neighborhood relation. Hence, the number of NF filters in the structure can be varied to obtain the desired filtering performance. Internal parameters of the NF filters are adaptively optimized by training by using a simple artificial training image that can easily be generated in a computer. Simulation results indicate that the proposed operator outperforms popular conventional as well as state-of-the-art impulse noise removal operators and offers superior performance in removing impulse noise from highly corrupted images while efficiently preserving image details and texture.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2004.10.002