Loading…

Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel

Nanocrystalline titania powders have been synthesized via conventional and modified sol–gel using an alkoxide precursor for different R , the ratio of molar concentration of water to that of alkoxide precursor, and calcination temperature. The apparent first-order reaction rate-constant obtained for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sol-gel science and technology 2008-02, Vol.45 (2), p.165-178
Main Authors: Baiju, K. V., Shukla, S., Sandhya, K. S., James, J., Warrier, K. G. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883
cites cdi_FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883
container_end_page 178
container_issue 2
container_start_page 165
container_title Journal of sol-gel science and technology
container_volume 45
creator Baiju, K. V.
Shukla, S.
Sandhya, K. S.
James, J.
Warrier, K. G. K.
description Nanocrystalline titania powders have been synthesized via conventional and modified sol–gel using an alkoxide precursor for different R , the ratio of molar concentration of water to that of alkoxide precursor, and calcination temperature. The apparent first-order reaction rate-constant obtained for the powder synthesized via conventional sol–gel is comparable with that of commercial Degussa-P25. Conventional sol–gel has been modified using the hydroxypropyl cellulose polymer to increase the specific surface area of the photocatalyst; and hence, to further enhance its photocatalytic activity. Although higher specific surface area and smaller average nanocrystallite size have been obtained for the powders synthesized via modified sol–gel, they exhibit reduced photocatalytic activity relative to that of powders synthesized via conventional sol–gel. The deactivation of the present photocatalyst has been explained on the basis of reduced surface-purity of the powders after processing via modified sol–gel as induced by the presence of surface-residual organic compounds.
doi_str_mv 10.1007/s10971-007-1653-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32142580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32142580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883</originalsourceid><addsrcrecordid>eNp1kd9qFTEQxoMo9Nj6AL1bEL2L5s_uZnMpxX9QKEjvwzSb1JSc5JjJFvZK38E37JOY5RQLgleZzPebjxk-Qs45e8cZU--RM604bSXl4yBp_4zs-KBaMfXjc7JjWkyUKaZOyEvEO8bY0HO1Iz-_5ei67Dtcigfr6GEpoa5dSN3he67ZQoW41mA7sDXcb1KDE6Rsy4pNiyG5DlLD0D38-l1DhRSgO5RsHaKbu_vtl-O6d4Xu8xx8aE3MscG3Lp6RFx4iuleP7ym5_vTx-uILvbz6_PXiwyW1UqlKOfNeC7Az9_3N3M6Q2lnuZwl-EjeT9qCVldwJ1e4aNRth1mpQbtD9pKZJnpK3R9u214_FYTX7gNbFCMnlBY0UvBfDxBr4-h_wLi8ltdWMEM1tHBmXjeJHypaMWJw3hxL2UFbDmdnyMMc8zFZueZi-zbx5dAa0EH2BZAP-HRSMq0ly3Thx5LBJ6daVpw3-b_4HipSe0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259466013</pqid></control><display><type>article</type><title>Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel</title><source>Springer Nature</source><creator>Baiju, K. V. ; Shukla, S. ; Sandhya, K. S. ; James, J. ; Warrier, K. G. K.</creator><creatorcontrib>Baiju, K. V. ; Shukla, S. ; Sandhya, K. S. ; James, J. ; Warrier, K. G. K.</creatorcontrib><description>Nanocrystalline titania powders have been synthesized via conventional and modified sol–gel using an alkoxide precursor for different R , the ratio of molar concentration of water to that of alkoxide precursor, and calcination temperature. The apparent first-order reaction rate-constant obtained for the powder synthesized via conventional sol–gel is comparable with that of commercial Degussa-P25. Conventional sol–gel has been modified using the hydroxypropyl cellulose polymer to increase the specific surface area of the photocatalyst; and hence, to further enhance its photocatalytic activity. Although higher specific surface area and smaller average nanocrystallite size have been obtained for the powders synthesized via modified sol–gel, they exhibit reduced photocatalytic activity relative to that of powders synthesized via conventional sol–gel. The deactivation of the present photocatalyst has been explained on the basis of reduced surface-purity of the powders after processing via modified sol–gel as induced by the presence of surface-residual organic compounds.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-007-1653-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anatase ; Catalytic activity ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composites ; Deactivation ; Exact sciences and technology ; General and physical chemistry ; Glass ; Hydroxypropyl cellulose ; Inorganic Chemistry ; Materials Science ; Nanocrystals ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Organic compounds ; Original Paper ; Photocatalysis ; Photocatalysts ; Photochemistry ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Polymers ; Precursors ; Purity ; Sol-gel processes ; Specific surface ; Surface area</subject><ispartof>Journal of sol-gel science and technology, 2008-02, Vol.45 (2), p.165-178</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883</citedby><cites>FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20178319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baiju, K. V.</creatorcontrib><creatorcontrib>Shukla, S.</creatorcontrib><creatorcontrib>Sandhya, K. S.</creatorcontrib><creatorcontrib>James, J.</creatorcontrib><creatorcontrib>Warrier, K. G. K.</creatorcontrib><title>Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Nanocrystalline titania powders have been synthesized via conventional and modified sol–gel using an alkoxide precursor for different R , the ratio of molar concentration of water to that of alkoxide precursor, and calcination temperature. The apparent first-order reaction rate-constant obtained for the powder synthesized via conventional sol–gel is comparable with that of commercial Degussa-P25. Conventional sol–gel has been modified using the hydroxypropyl cellulose polymer to increase the specific surface area of the photocatalyst; and hence, to further enhance its photocatalytic activity. Although higher specific surface area and smaller average nanocrystallite size have been obtained for the powders synthesized via modified sol–gel, they exhibit reduced photocatalytic activity relative to that of powders synthesized via conventional sol–gel. The deactivation of the present photocatalyst has been explained on the basis of reduced surface-purity of the powders after processing via modified sol–gel as induced by the presence of surface-residual organic compounds.</description><subject>Anatase</subject><subject>Catalytic activity</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composites</subject><subject>Deactivation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Hydroxypropyl cellulose</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Organic compounds</subject><subject>Original Paper</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemistry</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Purity</subject><subject>Sol-gel processes</subject><subject>Specific surface</subject><subject>Surface area</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kd9qFTEQxoMo9Nj6AL1bEL2L5s_uZnMpxX9QKEjvwzSb1JSc5JjJFvZK38E37JOY5RQLgleZzPebjxk-Qs45e8cZU--RM604bSXl4yBp_4zs-KBaMfXjc7JjWkyUKaZOyEvEO8bY0HO1Iz-_5ei67Dtcigfr6GEpoa5dSN3he67ZQoW41mA7sDXcb1KDE6Rsy4pNiyG5DlLD0D38-l1DhRSgO5RsHaKbu_vtl-O6d4Xu8xx8aE3MscG3Lp6RFx4iuleP7ym5_vTx-uILvbz6_PXiwyW1UqlKOfNeC7Az9_3N3M6Q2lnuZwl-EjeT9qCVldwJ1e4aNRth1mpQbtD9pKZJnpK3R9u214_FYTX7gNbFCMnlBY0UvBfDxBr4-h_wLi8ltdWMEM1tHBmXjeJHypaMWJw3hxL2UFbDmdnyMMc8zFZueZi-zbx5dAa0EH2BZAP-HRSMq0ly3Thx5LBJ6daVpw3-b_4HipSe0g</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Baiju, K. V.</creator><creator>Shukla, S.</creator><creator>Sandhya, K. S.</creator><creator>James, J.</creator><creator>Warrier, K. G. K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080201</creationdate><title>Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel</title><author>Baiju, K. V. ; Shukla, S. ; Sandhya, K. S. ; James, J. ; Warrier, K. G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anatase</topic><topic>Catalytic activity</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composites</topic><topic>Deactivation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Hydroxypropyl cellulose</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Organic compounds</topic><topic>Original Paper</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemistry</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Purity</topic><topic>Sol-gel processes</topic><topic>Specific surface</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baiju, K. V.</creatorcontrib><creatorcontrib>Shukla, S.</creatorcontrib><creatorcontrib>Sandhya, K. S.</creatorcontrib><creatorcontrib>James, J.</creatorcontrib><creatorcontrib>Warrier, K. G. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baiju, K. V.</au><au>Shukla, S.</au><au>Sandhya, K. S.</au><au>James, J.</au><au>Warrier, K. G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>45</volume><issue>2</issue><spage>165</spage><epage>178</epage><pages>165-178</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Nanocrystalline titania powders have been synthesized via conventional and modified sol–gel using an alkoxide precursor for different R , the ratio of molar concentration of water to that of alkoxide precursor, and calcination temperature. The apparent first-order reaction rate-constant obtained for the powder synthesized via conventional sol–gel is comparable with that of commercial Degussa-P25. Conventional sol–gel has been modified using the hydroxypropyl cellulose polymer to increase the specific surface area of the photocatalyst; and hence, to further enhance its photocatalytic activity. Although higher specific surface area and smaller average nanocrystallite size have been obtained for the powders synthesized via modified sol–gel, they exhibit reduced photocatalytic activity relative to that of powders synthesized via conventional sol–gel. The deactivation of the present photocatalyst has been explained on the basis of reduced surface-purity of the powders after processing via modified sol–gel as induced by the presence of surface-residual organic compounds.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-007-1653-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2008-02, Vol.45 (2), p.165-178
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_miscellaneous_32142580
source Springer Nature
subjects Anatase
Catalytic activity
Ceramics
Chemistry
Chemistry and Materials Science
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Composites
Deactivation
Exact sciences and technology
General and physical chemistry
Glass
Hydroxypropyl cellulose
Inorganic Chemistry
Materials Science
Nanocrystals
Nanotechnology
Natural Materials
Optical and Electronic Materials
Organic compounds
Original Paper
Photocatalysis
Photocatalysts
Photochemistry
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Polymers
Precursors
Purity
Sol-gel processes
Specific surface
Surface area
title Role of surface-purity in photocatalytic activity of nanocrystalline anatase–titania processed via polymer-modified sol–gel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20surface-purity%20in%20photocatalytic%20activity%20of%20nanocrystalline%20anatase%E2%80%93titania%20processed%20via%20polymer-modified%20sol%E2%80%93gel&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Baiju,%20K.%20V.&rft.date=2008-02-01&rft.volume=45&rft.issue=2&rft.spage=165&rft.epage=178&rft.pages=165-178&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-007-1653-4&rft_dat=%3Cproquest_cross%3E32142580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-10ff92acd1f4bd70739ec1fd3af82b89fa97c31e270546906ad9757e59487883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259466013&rft_id=info:pmid/&rfr_iscdi=true