Loading…

Synthesis and characterization of organo-attapulgite/polyaniline-dodecylbenzenesulfonic acid based on emulsion polymerization method

Organo‐attapulgite (OAT) was obtained by pretreating attapulgite (AT) with hexadecyltrimethyl ammonium bromide (HDTMABr) and dodecylbenzenesulfonic acid doped polyaniline (PAn‐DBSA) (OAT/PAn‐DBSA) was synthesized by emulsion polymerization at different OAT weight ratios. The perhaps polymerization p...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2008-03, Vol.29 (3), p.239-244
Main Authors: Lei, Xiping, Liu, Yushan, Su, Zhixing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organo‐attapulgite (OAT) was obtained by pretreating attapulgite (AT) with hexadecyltrimethyl ammonium bromide (HDTMABr) and dodecylbenzenesulfonic acid doped polyaniline (PAn‐DBSA) (OAT/PAn‐DBSA) was synthesized by emulsion polymerization at different OAT weight ratios. The perhaps polymerization procedure was supposed. The chemical structure and electronic absorption of the composites was confirmed by FTIR and UV–Vis spectroscopy, respectively. According to the X‐ray diffraction (XRD) results, it can be concluded that HDTMABr and PAn‐DBSA was just adsorbed on the surface of AT during the cation‐exchange process and OAT respectively without destroying the crystalline structure of AT or OAT. The composites showed a higher thermal stability than pure PAn‐DBSA by introduction of OAT into this polymerization system by using TGA analysis. Morphologies of the samples were confirmed by TEM and it showed that OAT was dispersed well in organic solvent after AT was pretreated with HDTMABr. The morphologies of OAT/PAn‐DBSA also supported the perhaps formation procedure we hypothesized. The electrical conductivity of the composite decreased with increasing the feed weight ratios of OAT in this polymerization system. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.20349