Loading…
Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale
A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on...
Saved in:
Published in: | Journal of difference equations and applications 2008-03, Vol.14 (3), p.287-293 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3 |
container_end_page | 293 |
container_issue | 3 |
container_start_page | 287 |
container_title | Journal of difference equations and applications |
container_volume | 14 |
creator | Topal, S. Gulsan Yantir, Ahmet Cetin, Erbil |
description | A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation
with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f. |
doi_str_mv | 10.1080/10236190701596508 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32261947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32261947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_wF1W7kbz6CQTcKOlPqCgUHUbkpkMRDJJTTLV_ntT6q6Iq3u493z3cg8AFxhdYdSga4wIZVggjnAtWI2aAzDBNaNVjQk6LLrMq2JojsFJSh8IkdJnE7Ccf9uUjW8NDD1chWSzXRuYghuzDT5tuwou8xiHamHDuLbOGXj3_gKDh8rD0esw-s50MNuhcK1y5gwc9colc_5bT8Hb_fx19lgtnh-eZreLqqWc54ppoXUnKNYE9wJPdcMIEZ1inE9Vy2ulBO9rVmtiONaNNoITpXmHi8C00_QUXO72rmL4HE3KcrCpNc4pb8KYJCWkfDzlxYh3xjaGlKLp5SraQcWNxEhu45N78RWG7xjr-xAH9RWi62RWGxdiH5VvbdqnZP7Ohbz5l6R_H_4BDO-HuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32261947</pqid></control><display><type>article</type><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><source>Taylor and Francis Science and Technology Collection</source><creator>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</creator><creatorcontrib>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</creatorcontrib><description>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation
with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190701596508</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Fixed point theorem ; Infinite interval ; Positive solutions ; Sturm-Liouville BVP ; Time scales</subject><ispartof>Journal of difference equations and applications, 2008-03, Vol.14 (3), p.287-293</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</citedby><cites>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Topal, S. Gulsan</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><creatorcontrib>Cetin, Erbil</creatorcontrib><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><title>Journal of difference equations and applications</title><description>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation
with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</description><subject>Fixed point theorem</subject><subject>Infinite interval</subject><subject>Positive solutions</subject><subject>Sturm-Liouville BVP</subject><subject>Time scales</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_wF1W7kbz6CQTcKOlPqCgUHUbkpkMRDJJTTLV_ntT6q6Iq3u493z3cg8AFxhdYdSga4wIZVggjnAtWI2aAzDBNaNVjQk6LLrMq2JojsFJSh8IkdJnE7Ccf9uUjW8NDD1chWSzXRuYghuzDT5tuwou8xiHamHDuLbOGXj3_gKDh8rD0esw-s50MNuhcK1y5gwc9colc_5bT8Hb_fx19lgtnh-eZreLqqWc54ppoXUnKNYE9wJPdcMIEZ1inE9Vy2ulBO9rVmtiONaNNoITpXmHi8C00_QUXO72rmL4HE3KcrCpNc4pb8KYJCWkfDzlxYh3xjaGlKLp5SraQcWNxEhu45N78RWG7xjr-xAH9RWi62RWGxdiH5VvbdqnZP7Ohbz5l6R_H_4BDO-HuA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Topal, S. Gulsan</creator><creator>Yantir, Ahmet</creator><creator>Cetin, Erbil</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><author>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fixed point theorem</topic><topic>Infinite interval</topic><topic>Positive solutions</topic><topic>Sturm-Liouville BVP</topic><topic>Time scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Topal, S. Gulsan</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><creatorcontrib>Cetin, Erbil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Topal, S. Gulsan</au><au>Yantir, Ahmet</au><au>Cetin, Erbil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>14</volume><issue>3</issue><spage>287</spage><epage>293</epage><pages>287-293</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation
with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/10236190701596508</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-6198 |
ispartof | Journal of difference equations and applications, 2008-03, Vol.14 (3), p.287-293 |
issn | 1023-6198 1563-5120 |
language | eng |
recordid | cdi_proquest_miscellaneous_32261947 |
source | Taylor and Francis Science and Technology Collection |
subjects | Fixed point theorem Infinite interval Positive solutions Sturm-Liouville BVP Time scales |
title | Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20positive%20solutions%20of%20a%20Sturm-Liouville%20BVP%20on%20an%20unbounded%20time%20scale&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Topal,%20S.%20Gulsan&rft.date=2008-03-01&rft.volume=14&rft.issue=3&rft.spage=287&rft.epage=293&rft.pages=287-293&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190701596508&rft_dat=%3Cproquest_cross%3E32261947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=32261947&rft_id=info:pmid/&rfr_iscdi=true |