Loading…

Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale

A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of difference equations and applications 2008-03, Vol.14 (3), p.287-293
Main Authors: Topal, S. Gulsan, Yantir, Ahmet, Cetin, Erbil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3
cites cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3
container_end_page 293
container_issue 3
container_start_page 287
container_title Journal of difference equations and applications
container_volume 14
creator Topal, S. Gulsan
Yantir, Ahmet
Cetin, Erbil
description A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.
doi_str_mv 10.1080/10236190701596508
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32261947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32261947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_wF1W7kbz6CQTcKOlPqCgUHUbkpkMRDJJTTLV_ntT6q6Iq3u493z3cg8AFxhdYdSga4wIZVggjnAtWI2aAzDBNaNVjQk6LLrMq2JojsFJSh8IkdJnE7Ccf9uUjW8NDD1chWSzXRuYghuzDT5tuwou8xiHamHDuLbOGXj3_gKDh8rD0esw-s50MNuhcK1y5gwc9colc_5bT8Hb_fx19lgtnh-eZreLqqWc54ppoXUnKNYE9wJPdcMIEZ1inE9Vy2ulBO9rVmtiONaNNoITpXmHi8C00_QUXO72rmL4HE3KcrCpNc4pb8KYJCWkfDzlxYh3xjaGlKLp5SraQcWNxEhu45N78RWG7xjr-xAH9RWi62RWGxdiH5VvbdqnZP7Ohbz5l6R_H_4BDO-HuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32261947</pqid></control><display><type>article</type><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><source>Taylor and Francis Science and Technology Collection</source><creator>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</creator><creatorcontrib>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</creatorcontrib><description>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190701596508</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Fixed point theorem ; Infinite interval ; Positive solutions ; Sturm-Liouville BVP ; Time scales</subject><ispartof>Journal of difference equations and applications, 2008-03, Vol.14 (3), p.287-293</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</citedby><cites>FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Topal, S. Gulsan</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><creatorcontrib>Cetin, Erbil</creatorcontrib><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><title>Journal of difference equations and applications</title><description>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</description><subject>Fixed point theorem</subject><subject>Infinite interval</subject><subject>Positive solutions</subject><subject>Sturm-Liouville BVP</subject><subject>Time scales</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_wF1W7kbz6CQTcKOlPqCgUHUbkpkMRDJJTTLV_ntT6q6Iq3u493z3cg8AFxhdYdSga4wIZVggjnAtWI2aAzDBNaNVjQk6LLrMq2JojsFJSh8IkdJnE7Ccf9uUjW8NDD1chWSzXRuYghuzDT5tuwou8xiHamHDuLbOGXj3_gKDh8rD0esw-s50MNuhcK1y5gwc9colc_5bT8Hb_fx19lgtnh-eZreLqqWc54ppoXUnKNYE9wJPdcMIEZ1inE9Vy2ulBO9rVmtiONaNNoITpXmHi8C00_QUXO72rmL4HE3KcrCpNc4pb8KYJCWkfDzlxYh3xjaGlKLp5SraQcWNxEhu45N78RWG7xjr-xAH9RWi62RWGxdiH5VvbdqnZP7Ohbz5l6R_H_4BDO-HuA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Topal, S. Gulsan</creator><creator>Yantir, Ahmet</creator><creator>Cetin, Erbil</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</title><author>Topal, S. Gulsan ; Yantir, Ahmet ; Cetin, Erbil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fixed point theorem</topic><topic>Infinite interval</topic><topic>Positive solutions</topic><topic>Sturm-Liouville BVP</topic><topic>Time scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Topal, S. Gulsan</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><creatorcontrib>Cetin, Erbil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Topal, S. Gulsan</au><au>Yantir, Ahmet</au><au>Cetin, Erbil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>14</volume><issue>3</issue><spage>287</spage><epage>293</epage><pages>287-293</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>A fixed point theorem of Guo-Krasnoselskii type is used to establish existence results for the nonlinear Sturm-Liouville dynamic equation with the boundary conditions on an unbounded time scale. Later on the positivity and the boundedness of the solutions are obtained by imposing some conditions on f.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10236190701596508</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-6198
ispartof Journal of difference equations and applications, 2008-03, Vol.14 (3), p.287-293
issn 1023-6198
1563-5120
language eng
recordid cdi_proquest_miscellaneous_32261947
source Taylor and Francis Science and Technology Collection
subjects Fixed point theorem
Infinite interval
Positive solutions
Sturm-Liouville BVP
Time scales
title Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20positive%20solutions%20of%20a%20Sturm-Liouville%20BVP%20on%20an%20unbounded%20time%20scale&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Topal,%20S.%20Gulsan&rft.date=2008-03-01&rft.volume=14&rft.issue=3&rft.spage=287&rft.epage=293&rft.pages=287-293&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190701596508&rft_dat=%3Cproquest_cross%3E32261947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-6b9bbd931b21f914b86229da6774ac75aa97f565b2e71b8be972ab7d1e9713db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=32261947&rft_id=info:pmid/&rfr_iscdi=true