Loading…

Eigenvalues of the Laplacian on an elliptic domain

The importance of eigenvalue problems concerning the Laplacian is well documented in classical and modern literature. Finding the eigenvalues for various geometries of the domains has posed many challenges which include infinite systems of algebraic equations, asymptotic methods, integral equations...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2008-03, Vol.55 (6), p.1129-1136
Main Authors: Wu, Yan, Shivakumar, P.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423
cites cdi_FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423
container_end_page 1136
container_issue 6
container_start_page 1129
container_title Computers & mathematics with applications (1987)
container_volume 55
creator Wu, Yan
Shivakumar, P.N.
description The importance of eigenvalue problems concerning the Laplacian is well documented in classical and modern literature. Finding the eigenvalues for various geometries of the domains has posed many challenges which include infinite systems of algebraic equations, asymptotic methods, integral equations etc. In this paper, we present a comprehensive account of the general solutions to Helmholtz’s equations (defined on simply connected regions) using complex variable techniques. We consider boundaries of the form z z ̄ = f ( z ± z ̄ ) or its inverse z ± z ̄ = g ( z z ̄ ) . To illustrate the theory, we reduce the problem on elliptic domains to equivalent linear infinite algebraic systems, where the coefficients of the infinite matrix are known polynomials of the eigenvalues. We compute truncations of the infinite system for numerical values. These values are compared to approximate values and some inequalities available in literature.
doi_str_mv 10.1016/j.camwa.2007.06.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32382996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122107005780</els_id><sourcerecordid>1082196577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwBTRbIZpdZsYbPwoKFIWHFIkGasvxesHRPsJ6E8Tf4xDqNDPNuaM7h7FrhAIBxd26cLb9tgUByAJEAShP2ASV5LkUQp2yCSitciTCc3YR4xoASk4wYbQIH77b2WbrY9bX2fjps6XdNNYF22V9l6XpmyZsxuCyqm9t6C7ZWW2b6K_-95S9Py7e5s_58vXpZf6wzF2JNOaacy0qT1KhJUSQHpQQJZGrBYAjzhVXboXkKqG0rGWla1IzwJlckSyJT9nN4e5m6L9SvdG0IbpUxna-30bDiSvSWiTw9iiIoAi1mEmZUH5A3dDHOPjabIbQ2uEnQWav0qzNn0qzV2lAmKQype4PKZ_e3QU_mOiC75yvwuDdaKo-HM3_AuOHel0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082196577</pqid></control><display><type>article</type><title>Eigenvalues of the Laplacian on an elliptic domain</title><source>ScienceDirect Journals</source><creator>Wu, Yan ; Shivakumar, P.N.</creator><creatorcontrib>Wu, Yan ; Shivakumar, P.N.</creatorcontrib><description>The importance of eigenvalue problems concerning the Laplacian is well documented in classical and modern literature. Finding the eigenvalues for various geometries of the domains has posed many challenges which include infinite systems of algebraic equations, asymptotic methods, integral equations etc. In this paper, we present a comprehensive account of the general solutions to Helmholtz’s equations (defined on simply connected regions) using complex variable techniques. We consider boundaries of the form z z ̄ = f ( z ± z ̄ ) or its inverse z ± z ̄ = g ( z z ̄ ) . To illustrate the theory, we reduce the problem on elliptic domains to equivalent linear infinite algebraic systems, where the coefficients of the infinite matrix are known polynomials of the eigenvalues. We compute truncations of the infinite system for numerical values. These values are compared to approximate values and some inequalities available in literature.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2007.06.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Approximation ; Asymptotic methods ; Boundaries ; Eigenvalues ; Helmholtz ; Infinite systems ; Inverse ; Laplacian ; Mathematical analysis ; Mathematical models ; Simply connected</subject><ispartof>Computers &amp; mathematics with applications (1987), 2008-03, Vol.55 (6), p.1129-1136</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423</citedby><cites>FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Shivakumar, P.N.</creatorcontrib><title>Eigenvalues of the Laplacian on an elliptic domain</title><title>Computers &amp; mathematics with applications (1987)</title><description>The importance of eigenvalue problems concerning the Laplacian is well documented in classical and modern literature. Finding the eigenvalues for various geometries of the domains has posed many challenges which include infinite systems of algebraic equations, asymptotic methods, integral equations etc. In this paper, we present a comprehensive account of the general solutions to Helmholtz’s equations (defined on simply connected regions) using complex variable techniques. We consider boundaries of the form z z ̄ = f ( z ± z ̄ ) or its inverse z ± z ̄ = g ( z z ̄ ) . To illustrate the theory, we reduce the problem on elliptic domains to equivalent linear infinite algebraic systems, where the coefficients of the infinite matrix are known polynomials of the eigenvalues. We compute truncations of the infinite system for numerical values. These values are compared to approximate values and some inequalities available in literature.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Boundaries</subject><subject>Eigenvalues</subject><subject>Helmholtz</subject><subject>Infinite systems</subject><subject>Inverse</subject><subject>Laplacian</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Simply connected</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiHwBTRbIZpdZsYbPwoKFIWHFIkGasvxesHRPsJ6E8Tf4xDqNDPNuaM7h7FrhAIBxd26cLb9tgUByAJEAShP2ASV5LkUQp2yCSitciTCc3YR4xoASk4wYbQIH77b2WbrY9bX2fjps6XdNNYF22V9l6XpmyZsxuCyqm9t6C7ZWW2b6K_-95S9Py7e5s_58vXpZf6wzF2JNOaacy0qT1KhJUSQHpQQJZGrBYAjzhVXboXkKqG0rGWla1IzwJlckSyJT9nN4e5m6L9SvdG0IbpUxna-30bDiSvSWiTw9iiIoAi1mEmZUH5A3dDHOPjabIbQ2uEnQWav0qzNn0qzV2lAmKQype4PKZ_e3QU_mOiC75yvwuDdaKo-HM3_AuOHel0</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Wu, Yan</creator><creator>Shivakumar, P.N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Eigenvalues of the Laplacian on an elliptic domain</title><author>Wu, Yan ; Shivakumar, P.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Boundaries</topic><topic>Eigenvalues</topic><topic>Helmholtz</topic><topic>Infinite systems</topic><topic>Inverse</topic><topic>Laplacian</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Simply connected</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Shivakumar, P.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yan</au><au>Shivakumar, P.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues of the Laplacian on an elliptic domain</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>6</issue><spage>1129</spage><epage>1136</epage><pages>1129-1136</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The importance of eigenvalue problems concerning the Laplacian is well documented in classical and modern literature. Finding the eigenvalues for various geometries of the domains has posed many challenges which include infinite systems of algebraic equations, asymptotic methods, integral equations etc. In this paper, we present a comprehensive account of the general solutions to Helmholtz’s equations (defined on simply connected regions) using complex variable techniques. We consider boundaries of the form z z ̄ = f ( z ± z ̄ ) or its inverse z ± z ̄ = g ( z z ̄ ) . To illustrate the theory, we reduce the problem on elliptic domains to equivalent linear infinite algebraic systems, where the coefficients of the infinite matrix are known polynomials of the eigenvalues. We compute truncations of the infinite system for numerical values. These values are compared to approximate values and some inequalities available in literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2007.06.017</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2008-03, Vol.55 (6), p.1129-1136
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_32382996
source ScienceDirect Journals
subjects Algebra
Approximation
Asymptotic methods
Boundaries
Eigenvalues
Helmholtz
Infinite systems
Inverse
Laplacian
Mathematical analysis
Mathematical models
Simply connected
title Eigenvalues of the Laplacian on an elliptic domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues%20of%20the%20Laplacian%20on%20an%20elliptic%20domain&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Wu,%20Yan&rft.date=2008-03-01&rft.volume=55&rft.issue=6&rft.spage=1129&rft.epage=1136&rft.pages=1129-1136&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2007.06.017&rft_dat=%3Cproquest_cross%3E1082196577%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-93396de2781a21107e0866422cf600c233838cb12cd6897f7d9f2850157b27423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082196577&rft_id=info:pmid/&rfr_iscdi=true