Loading…
A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation
We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics in the proximity of the turbulent/non-turbulent interface in a flow without strong mean shear. The techniques used are three-dimensional particle tracking (3D-PTV), allowing the field of velocity derivatives to be measu...
Saved in:
Published in: | Journal of fluid mechanics 2008-03, Vol.598, p.465-475 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363 |
---|---|
cites | cdi_FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363 |
container_end_page | 475 |
container_issue | |
container_start_page | 465 |
container_title | Journal of fluid mechanics |
container_volume | 598 |
creator | HOLZNER, MARKUS LIBERZON, A. NIKITIN, N. LÜTHI, B. KINZELBACH, W. TSINOBER, A. |
description | We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics in the proximity of the turbulent/non-turbulent interface in a flow without strong mean shear. The techniques used are three-dimensional particle tracking (3D-PTV), allowing the field of velocity derivatives to be measured and followed in a Lagrangian manner, and direct numerical simulations (DNS). In both experiment and simulation the Taylor-microscale Reynolds number is Reλ = 50. The results are based on the Lagrangian viewpoint with the main focus on flow particle tracers crossing the turbulent/non-turbulent interface. This approach allowed a direct investigation of the key physical processes underlying the entrainment phenomenon and revealed the role of small-scale non-local, inviscid and viscous processes. We found that the entrainment mechanism is initiated by self-amplification of s2 through the combined effect of strain production and pressure--strain interaction. This process is followed by a sharp change of ω2 induced mostly by production due to viscous effects. The influence of inviscid production is initially small but gradually increasing, whereas viscous production changes abruptly towards the destruction of ω2. Finally, shortly after the crossing of the turbulent/non-turbulent interface, production and dissipation of both enstrophy and strain reach a balance. The characteristic time scale of the described processes is the Kolmogorov time scale, τη. Locally, the characteristic velocity of the fluid relative to the turbulent/non-turbulent interface is the Kolmogorov velocity, uη. |
doi_str_mv | 10.1017/S0022112008000141 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32409667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112008000141</cupid><sourcerecordid>21015614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363</originalsourceid><addsrcrecordid>eNqFkd-K1DAUxoMoOI4-gHdB0LuuSdokk8tlXWeFARX_XYY0Pelkt03HJBV9BN_adGdYQREvQgLf75x83zkIPaXkjBIqX34ghDFKGSEbQght6D20oo1QlRQNv49Wi1wt-kP0KKXrgtREyRX6eY53po8m9N4E7MM3SNn3Jvsp4MnhvAecRjMMVbJmAOzA5DlCutXm2M4DhIzLicaHcXnnfZzmfo8PJmZvS0mR7I0PPTahw52PYDMO8wjRl444-XEebr97jB44MyR4crrX6NPry48XV9Xu7fbNxfmusoLUubIbsmkbyTtGW04bDu0GmCJ1C6aTggkluHVSMuakE23XNU50httWOQChalGv0Ytj30Ocvs4lrh59sjAMJsA0J12zhigh5H9BVgbPBW0K-OwP8HqaYyghFmajlCrO14geIRunlCI4fYh-NPGHpkQvK9R_rbDUPD81Nsv4XVmT9emukBVIcqIKVx05nzJ8v9NNvNElh-RabN_rz1-4at5tX-klWX3yYsY2-q6H347_7eYXgRa7vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210899960</pqid></control><display><type>article</type><title>A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation</title><source>Cambridge University Press</source><creator>HOLZNER, MARKUS ; LIBERZON, A. ; NIKITIN, N. ; LÜTHI, B. ; KINZELBACH, W. ; TSINOBER, A.</creator><creatorcontrib>HOLZNER, MARKUS ; LIBERZON, A. ; NIKITIN, N. ; LÜTHI, B. ; KINZELBACH, W. ; TSINOBER, A.</creatorcontrib><description>We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics in the proximity of the turbulent/non-turbulent interface in a flow without strong mean shear. The techniques used are three-dimensional particle tracking (3D-PTV), allowing the field of velocity derivatives to be measured and followed in a Lagrangian manner, and direct numerical simulations (DNS). In both experiment and simulation the Taylor-microscale Reynolds number is Reλ = 50. The results are based on the Lagrangian viewpoint with the main focus on flow particle tracers crossing the turbulent/non-turbulent interface. This approach allowed a direct investigation of the key physical processes underlying the entrainment phenomenon and revealed the role of small-scale non-local, inviscid and viscous processes. We found that the entrainment mechanism is initiated by self-amplification of s2 through the combined effect of strain production and pressure--strain interaction. This process is followed by a sharp change of ω2 induced mostly by production due to viscous effects. The influence of inviscid production is initially small but gradually increasing, whereas viscous production changes abruptly towards the destruction of ω2. Finally, shortly after the crossing of the turbulent/non-turbulent interface, production and dissipation of both enstrophy and strain reach a balance. The characteristic time scale of the described processes is the Kolmogorov time scale, τη. Locally, the characteristic velocity of the fluid relative to the turbulent/non-turbulent interface is the Kolmogorov velocity, uη.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112008000141</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Entrainment ; Fluid mechanics ; Turbulence</subject><ispartof>Journal of fluid mechanics, 2008-03, Vol.598, p.465-475</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363</citedby><cites>FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112008000141/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20147509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HOLZNER, MARKUS</creatorcontrib><creatorcontrib>LIBERZON, A.</creatorcontrib><creatorcontrib>NIKITIN, N.</creatorcontrib><creatorcontrib>LÜTHI, B.</creatorcontrib><creatorcontrib>KINZELBACH, W.</creatorcontrib><creatorcontrib>TSINOBER, A.</creatorcontrib><title>A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics in the proximity of the turbulent/non-turbulent interface in a flow without strong mean shear. The techniques used are three-dimensional particle tracking (3D-PTV), allowing the field of velocity derivatives to be measured and followed in a Lagrangian manner, and direct numerical simulations (DNS). In both experiment and simulation the Taylor-microscale Reynolds number is Reλ = 50. The results are based on the Lagrangian viewpoint with the main focus on flow particle tracers crossing the turbulent/non-turbulent interface. This approach allowed a direct investigation of the key physical processes underlying the entrainment phenomenon and revealed the role of small-scale non-local, inviscid and viscous processes. We found that the entrainment mechanism is initiated by self-amplification of s2 through the combined effect of strain production and pressure--strain interaction. This process is followed by a sharp change of ω2 induced mostly by production due to viscous effects. The influence of inviscid production is initially small but gradually increasing, whereas viscous production changes abruptly towards the destruction of ω2. Finally, shortly after the crossing of the turbulent/non-turbulent interface, production and dissipation of both enstrophy and strain reach a balance. The characteristic time scale of the described processes is the Kolmogorov time scale, τη. Locally, the characteristic velocity of the fluid relative to the turbulent/non-turbulent interface is the Kolmogorov velocity, uη.</description><subject>Entrainment</subject><subject>Fluid mechanics</subject><subject>Turbulence</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkd-K1DAUxoMoOI4-gHdB0LuuSdokk8tlXWeFARX_XYY0Pelkt03HJBV9BN_adGdYQREvQgLf75x83zkIPaXkjBIqX34ghDFKGSEbQght6D20oo1QlRQNv49Wi1wt-kP0KKXrgtREyRX6eY53po8m9N4E7MM3SNn3Jvsp4MnhvAecRjMMVbJmAOzA5DlCutXm2M4DhIzLicaHcXnnfZzmfo8PJmZvS0mR7I0PPTahw52PYDMO8wjRl444-XEebr97jB44MyR4crrX6NPry48XV9Xu7fbNxfmusoLUubIbsmkbyTtGW04bDu0GmCJ1C6aTggkluHVSMuakE23XNU50httWOQChalGv0Ytj30Ocvs4lrh59sjAMJsA0J12zhigh5H9BVgbPBW0K-OwP8HqaYyghFmajlCrO14geIRunlCI4fYh-NPGHpkQvK9R_rbDUPD81Nsv4XVmT9emukBVIcqIKVx05nzJ8v9NNvNElh-RabN_rz1-4at5tX-klWX3yYsY2-q6H347_7eYXgRa7vA</recordid><startdate>20080310</startdate><enddate>20080310</enddate><creator>HOLZNER, MARKUS</creator><creator>LIBERZON, A.</creator><creator>NIKITIN, N.</creator><creator>LÜTHI, B.</creator><creator>KINZELBACH, W.</creator><creator>TSINOBER, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080310</creationdate><title>A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation</title><author>HOLZNER, MARKUS ; LIBERZON, A. ; NIKITIN, N. ; LÜTHI, B. ; KINZELBACH, W. ; TSINOBER, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Entrainment</topic><topic>Fluid mechanics</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOLZNER, MARKUS</creatorcontrib><creatorcontrib>LIBERZON, A.</creatorcontrib><creatorcontrib>NIKITIN, N.</creatorcontrib><creatorcontrib>LÜTHI, B.</creatorcontrib><creatorcontrib>KINZELBACH, W.</creatorcontrib><creatorcontrib>TSINOBER, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOLZNER, MARKUS</au><au>LIBERZON, A.</au><au>NIKITIN, N.</au><au>LÜTHI, B.</au><au>KINZELBACH, W.</au><au>TSINOBER, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2008-03-10</date><risdate>2008</risdate><volume>598</volume><spage>465</spage><epage>475</epage><pages>465-475</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics in the proximity of the turbulent/non-turbulent interface in a flow without strong mean shear. The techniques used are three-dimensional particle tracking (3D-PTV), allowing the field of velocity derivatives to be measured and followed in a Lagrangian manner, and direct numerical simulations (DNS). In both experiment and simulation the Taylor-microscale Reynolds number is Reλ = 50. The results are based on the Lagrangian viewpoint with the main focus on flow particle tracers crossing the turbulent/non-turbulent interface. This approach allowed a direct investigation of the key physical processes underlying the entrainment phenomenon and revealed the role of small-scale non-local, inviscid and viscous processes. We found that the entrainment mechanism is initiated by self-amplification of s2 through the combined effect of strain production and pressure--strain interaction. This process is followed by a sharp change of ω2 induced mostly by production due to viscous effects. The influence of inviscid production is initially small but gradually increasing, whereas viscous production changes abruptly towards the destruction of ω2. Finally, shortly after the crossing of the turbulent/non-turbulent interface, production and dissipation of both enstrophy and strain reach a balance. The characteristic time scale of the described processes is the Kolmogorov time scale, τη. Locally, the characteristic velocity of the fluid relative to the turbulent/non-turbulent interface is the Kolmogorov velocity, uη.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112008000141</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2008-03, Vol.598, p.465-475 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_32409667 |
source | Cambridge University Press |
subjects | Entrainment Fluid mechanics Turbulence |
title | A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lagrangian%20investigation%20of%20the%20small-scale%20features%20of%20turbulent%20entrainment%20through%20particle%20tracking%20and%20direct%20numerical%20simulation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=HOLZNER,%20MARKUS&rft.date=2008-03-10&rft.volume=598&rft.spage=465&rft.epage=475&rft.pages=465-475&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112008000141&rft_dat=%3Cproquest_cross%3E21015614%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c603t-c808b475d21b5145eb8e2903bead7626965cf7722f7f6bdd4f6da5cb9fee69363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210899960&rft_id=info:pmid/&rft_cupid=10_1017_S0022112008000141&rfr_iscdi=true |