Loading…

Revisiting Hume-Rothery’s Rules with artificial neural networks

Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neu...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2008-03, Vol.56 (5), p.1094-1105
Main Authors: Zhang, Y.M., Yang, S., Evans, J.R.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643
cites cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643
container_end_page 1105
container_issue 5
container_start_page 1094
container_title Acta materialia
container_volume 56
creator Zhang, Y.M.
Yang, S.
Evans, J.R.G.
description Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.
doi_str_mv 10.1016/j.actamat.2007.10.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32629181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645407007616</els_id><sourcerecordid>1082194086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</originalsourceid><addsrcrecordid>eNqFkM1KAzEURgdRsFYfQZiN4mZqksnPZCVF1AoFoeg6ZNI7NnU6U5NMS3e-hq_nk5ja4lJX3-Vy7v3gJMk5RgOMML-eD7QJeqHDgCAk4m6AmDxIergQeUYoyw_jnDOZccrocXLi_RwhTARFvWQ4gZX1NtjmNR11C8gmbZiB23x9fPp00tXg07UNs1S7YCtrrK7TBjr3E2Hdujd_mhxVuvZwts9-8nJ_93w7ysZPD4-3w3FmKGMh05RKSiiRCJVFCRU3yBREaKKnXBBZ8pyWSJRM5iAoLytiMGVSo6kQwmBO835yufu7dO17Bz6ohfUG6lo30HZe5YQTiQscwas_QYwKgiVFBY8o26HGtd47qNTS2YV2mwiprVs1V3u3aut2u45u493FvkJ7o-vK6cZY_3tMEM4lYyRyNzsOopiVBae8sdAYmFoHJqhpa_9p-gZE6JHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082194086</pqid></control><display><type>article</type><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</creator><creatorcontrib>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</creatorcontrib><description>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2007.10.059</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial neural networks ; Backpropagation networks ; Binary alloys ; Copper base alloys ; Correlation ; Exact sciences and technology ; Hume-Rothery’s Rules ; Learning theory ; Metals. Metallurgy ; Neural networks ; Phase diagrams ; Solid solubility ; Solubility ; Solubility limit of metals</subject><ispartof>Acta materialia, 2008-03, Vol.56 (5), p.1094-1105</ispartof><rights>2007 Acta Materialia Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</citedby><cites>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20139552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y.M.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Evans, J.R.G.</creatorcontrib><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><title>Acta materialia</title><description>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</description><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Backpropagation networks</subject><subject>Binary alloys</subject><subject>Copper base alloys</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>Hume-Rothery’s Rules</subject><subject>Learning theory</subject><subject>Metals. Metallurgy</subject><subject>Neural networks</subject><subject>Phase diagrams</subject><subject>Solid solubility</subject><subject>Solubility</subject><subject>Solubility limit of metals</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURgdRsFYfQZiN4mZqksnPZCVF1AoFoeg6ZNI7NnU6U5NMS3e-hq_nk5ja4lJX3-Vy7v3gJMk5RgOMML-eD7QJeqHDgCAk4m6AmDxIergQeUYoyw_jnDOZccrocXLi_RwhTARFvWQ4gZX1NtjmNR11C8gmbZiB23x9fPp00tXg07UNs1S7YCtrrK7TBjr3E2Hdujd_mhxVuvZwts9-8nJ_93w7ysZPD4-3w3FmKGMh05RKSiiRCJVFCRU3yBREaKKnXBBZ8pyWSJRM5iAoLytiMGVSo6kQwmBO835yufu7dO17Bz6ohfUG6lo30HZe5YQTiQscwas_QYwKgiVFBY8o26HGtd47qNTS2YV2mwiprVs1V3u3aut2u45u493FvkJ7o-vK6cZY_3tMEM4lYyRyNzsOopiVBae8sdAYmFoHJqhpa_9p-gZE6JHo</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Zhang, Y.M.</creator><creator>Yang, S.</creator><creator>Evans, J.R.G.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20080301</creationdate><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><author>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Backpropagation networks</topic><topic>Binary alloys</topic><topic>Copper base alloys</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>Hume-Rothery’s Rules</topic><topic>Learning theory</topic><topic>Metals. Metallurgy</topic><topic>Neural networks</topic><topic>Phase diagrams</topic><topic>Solid solubility</topic><topic>Solubility</topic><topic>Solubility limit of metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.M.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Evans, J.R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.M.</au><au>Yang, S.</au><au>Evans, J.R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Hume-Rothery’s Rules with artificial neural networks</atitle><jtitle>Acta materialia</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>56</volume><issue>5</issue><spage>1094</spage><epage>1105</epage><pages>1094-1105</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2007.10.059</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2008-03, Vol.56 (5), p.1094-1105
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_32629181
source ScienceDirect Freedom Collection
subjects Applied sciences
Artificial neural networks
Backpropagation networks
Binary alloys
Copper base alloys
Correlation
Exact sciences and technology
Hume-Rothery’s Rules
Learning theory
Metals. Metallurgy
Neural networks
Phase diagrams
Solid solubility
Solubility
Solubility limit of metals
title Revisiting Hume-Rothery’s Rules with artificial neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Hume-Rothery%E2%80%99s%20Rules%20with%20artificial%20neural%20networks&rft.jtitle=Acta%20materialia&rft.au=Zhang,%20Y.M.&rft.date=2008-03-01&rft.volume=56&rft.issue=5&rft.spage=1094&rft.epage=1105&rft.pages=1094-1105&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2007.10.059&rft_dat=%3Cproquest_cross%3E1082194086%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082194086&rft_id=info:pmid/&rfr_iscdi=true