Loading…
Revisiting Hume-Rothery’s Rules with artificial neural networks
Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neu...
Saved in:
Published in: | Acta materialia 2008-03, Vol.56 (5), p.1094-1105 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643 |
container_end_page | 1105 |
container_issue | 5 |
container_start_page | 1094 |
container_title | Acta materialia |
container_volume | 56 |
creator | Zhang, Y.M. Yang, S. Evans, J.R.G. |
description | Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN. |
doi_str_mv | 10.1016/j.actamat.2007.10.059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32629181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645407007616</els_id><sourcerecordid>1082194086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</originalsourceid><addsrcrecordid>eNqFkM1KAzEURgdRsFYfQZiN4mZqksnPZCVF1AoFoeg6ZNI7NnU6U5NMS3e-hq_nk5ja4lJX3-Vy7v3gJMk5RgOMML-eD7QJeqHDgCAk4m6AmDxIergQeUYoyw_jnDOZccrocXLi_RwhTARFvWQ4gZX1NtjmNR11C8gmbZiB23x9fPp00tXg07UNs1S7YCtrrK7TBjr3E2Hdujd_mhxVuvZwts9-8nJ_93w7ysZPD4-3w3FmKGMh05RKSiiRCJVFCRU3yBREaKKnXBBZ8pyWSJRM5iAoLytiMGVSo6kQwmBO835yufu7dO17Bz6ohfUG6lo30HZe5YQTiQscwas_QYwKgiVFBY8o26HGtd47qNTS2YV2mwiprVs1V3u3aut2u45u493FvkJ7o-vK6cZY_3tMEM4lYyRyNzsOopiVBae8sdAYmFoHJqhpa_9p-gZE6JHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082194086</pqid></control><display><type>article</type><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</creator><creatorcontrib>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</creatorcontrib><description>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2007.10.059</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial neural networks ; Backpropagation networks ; Binary alloys ; Copper base alloys ; Correlation ; Exact sciences and technology ; Hume-Rothery’s Rules ; Learning theory ; Metals. Metallurgy ; Neural networks ; Phase diagrams ; Solid solubility ; Solubility ; Solubility limit of metals</subject><ispartof>Acta materialia, 2008-03, Vol.56 (5), p.1094-1105</ispartof><rights>2007 Acta Materialia Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</citedby><cites>FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20139552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y.M.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Evans, J.R.G.</creatorcontrib><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><title>Acta materialia</title><description>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</description><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Backpropagation networks</subject><subject>Binary alloys</subject><subject>Copper base alloys</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>Hume-Rothery’s Rules</subject><subject>Learning theory</subject><subject>Metals. Metallurgy</subject><subject>Neural networks</subject><subject>Phase diagrams</subject><subject>Solid solubility</subject><subject>Solubility</subject><subject>Solubility limit of metals</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURgdRsFYfQZiN4mZqksnPZCVF1AoFoeg6ZNI7NnU6U5NMS3e-hq_nk5ja4lJX3-Vy7v3gJMk5RgOMML-eD7QJeqHDgCAk4m6AmDxIergQeUYoyw_jnDOZccrocXLi_RwhTARFvWQ4gZX1NtjmNR11C8gmbZiB23x9fPp00tXg07UNs1S7YCtrrK7TBjr3E2Hdujd_mhxVuvZwts9-8nJ_93w7ysZPD4-3w3FmKGMh05RKSiiRCJVFCRU3yBREaKKnXBBZ8pyWSJRM5iAoLytiMGVSo6kQwmBO835yufu7dO17Bz6ohfUG6lo30HZe5YQTiQscwas_QYwKgiVFBY8o26HGtd47qNTS2YV2mwiprVs1V3u3aut2u45u493FvkJ7o-vK6cZY_3tMEM4lYyRyNzsOopiVBae8sdAYmFoHJqhpa_9p-gZE6JHo</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Zhang, Y.M.</creator><creator>Yang, S.</creator><creator>Evans, J.R.G.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20080301</creationdate><title>Revisiting Hume-Rothery’s Rules with artificial neural networks</title><author>Zhang, Y.M. ; Yang, S. ; Evans, J.R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Backpropagation networks</topic><topic>Binary alloys</topic><topic>Copper base alloys</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>Hume-Rothery’s Rules</topic><topic>Learning theory</topic><topic>Metals. Metallurgy</topic><topic>Neural networks</topic><topic>Phase diagrams</topic><topic>Solid solubility</topic><topic>Solubility</topic><topic>Solubility limit of metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.M.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Evans, J.R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.M.</au><au>Yang, S.</au><au>Evans, J.R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Hume-Rothery’s Rules with artificial neural networks</atitle><jtitle>Acta materialia</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>56</volume><issue>5</issue><spage>1094</spage><epage>1105</epage><pages>1094-1105</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2007.10.059</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2008-03, Vol.56 (5), p.1094-1105 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_32629181 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Artificial neural networks Backpropagation networks Binary alloys Copper base alloys Correlation Exact sciences and technology Hume-Rothery’s Rules Learning theory Metals. Metallurgy Neural networks Phase diagrams Solid solubility Solubility Solubility limit of metals |
title | Revisiting Hume-Rothery’s Rules with artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Hume-Rothery%E2%80%99s%20Rules%20with%20artificial%20neural%20networks&rft.jtitle=Acta%20materialia&rft.au=Zhang,%20Y.M.&rft.date=2008-03-01&rft.volume=56&rft.issue=5&rft.spage=1094&rft.epage=1105&rft.pages=1094-1105&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2007.10.059&rft_dat=%3Cproquest_cross%3E1082194086%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a4494242900b8bef6c0c827a2ad6729b634b07b593e746bf2c1459a0d777c1643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082194086&rft_id=info:pmid/&rfr_iscdi=true |