Loading…

Thickness control of solution deposited YBCO superconducting films by use of organic polymeric additives

We show that the thickness of yttrium–barium–copper–oxide (YBCO) superconducting films grown from trifluoroacetate precursors can be strongly modified using polymeric additives, while deposition conditions by spin or dip coating remain unchanged. A screening of different families of organic additive...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2007-08, Vol.22 (8), p.2330-2338
Main Authors: Morlens, S., Romà, N., Ricart, S., Pomar, A., Puig, T., Obradors, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that the thickness of yttrium–barium–copper–oxide (YBCO) superconducting films grown from trifluoroacetate precursors can be strongly modified using polymeric additives, while deposition conditions by spin or dip coating remain unchanged. A screening of different families of organic additives has been performed, and the best results have been achieved using polymers having an oxygen functionalized backbone. Two different polymeric additives, polyvinyl pyrrolidone (PVP) and poly(ethylene glycol) (PEG), have been more thoroughly investigated, and thermal analysis suggests that PEG is the most promising alternative because the pyrolysis step of the new complex precursors remains sharp and narrow and hence the final homogeneity of the film is preserved. The combination of anhydrous trifluoroacetic acid (TFA) solutions and poly(ethylene-glycol) (PEG8000) as additive can produce an increase of the YBCO film thickness up to 300%, while keeping a fast pyrolysis process and high critical current densities.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2007.0296