Loading…

Theoretical and experimental study of the vibrational spectra of 1,5-dimethylcytosine

The Raman spectra of the solid 1,5-dimethylcytosine and the FTIR spectra at room and low temperatures respectively have been registered. Quantum mechanical calculations of energies, geometries and vibrational wavenumbers were carried out by using ab initio (HF) and Density Functional Theory (DFT/BLY...

Full description

Saved in:
Bibliographic Details
Published in:Vibrational spectroscopy 2008-03, Vol.46 (2), p.89-99
Main Authors: Brandán, S.A., Benzal, G., García-Ramos, J.V., Otero, J.C., Ben Altabef, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Raman spectra of the solid 1,5-dimethylcytosine and the FTIR spectra at room and low temperatures respectively have been registered. Quantum mechanical calculations of energies, geometries and vibrational wavenumbers were carried out by using ab initio (HF) and Density Functional Theory (DFT/BLYP and B3LYP) methods with different basis sets. The best level of theory in order to reproduce the experimental wavenumbers is the BLYP method with the 6-31G * basis set. The theoretical calculations indicate the presence of four stable tautomers of 1,5-dimethylcytosine: amino-oxo; imino-oxo (a and b) and imino-hidroxy. Their geometries were optimised by using the BLYP/6-31G * method, being the amino-oxo tautomer the most stable, followed by the imino-oxo tautomer, while the imino-hidroxy one is the most unstable. The complete assignment of the observed bands in the vibrational spectra of the amino-oxo tautomer is proposed in this work.
ISSN:0924-2031
1873-3697
DOI:10.1016/j.vibspec.2007.11.001