Loading…

The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight

We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low temperature physics 2008-05, Vol.151 (3-4), p.715-720
Main Authors: McCammon, D., Barger, K., Brandl, D. E., Brekosky, R. P., Crowder, S. G., Gygax, J. D., Kelley, R. L., Kilbourne, C. A., Lindeman, M. A., Porter, F. S., Rocks, L. E., Szymkowiak, A. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593
cites cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593
container_end_page 720
container_issue 3-4
container_start_page 715
container_title Journal of low temperature physics
container_volume 151
creator McCammon, D.
Barger, K.
Brandl, D. E.
Brekosky, R. P.
Crowder, S. G.
Gygax, J. D.
Kelley, R. L.
Kilbourne, C. A.
Lindeman, M. A.
Porter, F. S.
Rocks, L. E.
Szymkowiak, A. E.
description We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm −2 is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have >95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.
doi_str_mv 10.1007/s10909-008-9734-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32711678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32711678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx84mbwTxPb3FBVoFIFAoqEuFiu47QpSVxsB7Vvj6Nw5rQa7cxq5wPgkuBrgjG_CQRLLBHGAknOJig7AiOScYY4y_gxGGFMKaJUklNwFsIWYyxFzkbgc7mx8AN5fYAvnW5j18Cprp2vGhuth2-ua4uqXcNXZ75shLP9zva7Nt7CebPz7sf2IsDSeRjTqSe7j_C-rtabeA5OSl0He_E3x-D9fracPqLF88N8erdAhhEZkdZSi1LyPMtlJihPihkrJZcTMjEFzpghuWGiLAhmmhBR8hUv6IrmxohVJtkYXA130zvfnQ1RNVUwtq51a10XFKOckJyLZCSD0XgXgrel2qUu2h8UwaqnqAaKKlFUPUWVpQwdMiF527X1aus636Y-_4R-ATaHdQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32711678</pqid></control><display><type>article</type><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><source>Springer Nature</source><creator>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</creator><creatorcontrib>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</creatorcontrib><description>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm −2 is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have &gt;95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-008-9734-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy</subject><ispartof>Journal of low temperature physics, 2008-05, Vol.151 (3-4), p.715-720</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</citedby><cites>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>McCammon, D.</creatorcontrib><creatorcontrib>Barger, K.</creatorcontrib><creatorcontrib>Brandl, D. E.</creatorcontrib><creatorcontrib>Brekosky, R. P.</creatorcontrib><creatorcontrib>Crowder, S. G.</creatorcontrib><creatorcontrib>Gygax, J. D.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Kilbourne, C. A.</creatorcontrib><creatorcontrib>Lindeman, M. A.</creatorcontrib><creatorcontrib>Porter, F. S.</creatorcontrib><creatorcontrib>Rocks, L. E.</creatorcontrib><creatorcontrib>Szymkowiak, A. E.</creatorcontrib><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm −2 is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have &gt;95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx84mbwTxPb3FBVoFIFAoqEuFiu47QpSVxsB7Vvj6Nw5rQa7cxq5wPgkuBrgjG_CQRLLBHGAknOJig7AiOScYY4y_gxGGFMKaJUklNwFsIWYyxFzkbgc7mx8AN5fYAvnW5j18Cprp2vGhuth2-ua4uqXcNXZ75shLP9zva7Nt7CebPz7sf2IsDSeRjTqSe7j_C-rtabeA5OSl0He_E3x-D9fracPqLF88N8erdAhhEZkdZSi1LyPMtlJihPihkrJZcTMjEFzpghuWGiLAhmmhBR8hUv6IrmxohVJtkYXA130zvfnQ1RNVUwtq51a10XFKOckJyLZCSD0XgXgrel2qUu2h8UwaqnqAaKKlFUPUWVpQwdMiF527X1aus636Y-_4R-ATaHdQM</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>McCammon, D.</creator><creator>Barger, K.</creator><creator>Brandl, D. E.</creator><creator>Brekosky, R. P.</creator><creator>Crowder, S. G.</creator><creator>Gygax, J. D.</creator><creator>Kelley, R. L.</creator><creator>Kilbourne, C. A.</creator><creator>Lindeman, M. A.</creator><creator>Porter, F. S.</creator><creator>Rocks, L. E.</creator><creator>Szymkowiak, A. E.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080501</creationdate><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><author>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCammon, D.</creatorcontrib><creatorcontrib>Barger, K.</creatorcontrib><creatorcontrib>Brandl, D. E.</creatorcontrib><creatorcontrib>Brekosky, R. P.</creatorcontrib><creatorcontrib>Crowder, S. G.</creatorcontrib><creatorcontrib>Gygax, J. D.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Kilbourne, C. A.</creatorcontrib><creatorcontrib>Lindeman, M. A.</creatorcontrib><creatorcontrib>Porter, F. S.</creatorcontrib><creatorcontrib>Rocks, L. E.</creatorcontrib><creatorcontrib>Szymkowiak, A. E.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCammon, D.</au><au>Barger, K.</au><au>Brandl, D. E.</au><au>Brekosky, R. P.</au><au>Crowder, S. G.</au><au>Gygax, J. D.</au><au>Kelley, R. L.</au><au>Kilbourne, C. A.</au><au>Lindeman, M. A.</au><au>Porter, F. S.</au><au>Rocks, L. E.</au><au>Szymkowiak, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>151</volume><issue>3-4</issue><spage>715</spage><epage>720</epage><pages>715-720</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm −2 is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have &gt;95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10909-008-9734-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2008-05, Vol.151 (3-4), p.715-720
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_miscellaneous_32711678
source Springer Nature
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Magnetic Materials
Magnetism
Physics
Physics and Astronomy
title The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20X-ray%20Quantum%20Calorimeter%20Sounding%20Rocket%20Experiment:%20Improvements%20for%20the%20Next%20Flight&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=McCammon,%20D.&rft.date=2008-05-01&rft.volume=151&rft.issue=3-4&rft.spage=715&rft.epage=720&rft.pages=715-720&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-008-9734-5&rft_dat=%3Cproquest_cross%3E32711678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=32711678&rft_id=info:pmid/&rfr_iscdi=true