Loading…
The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight
We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm 2 , making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported...
Saved in:
Published in: | Journal of low temperature physics 2008-05, Vol.151 (3-4), p.715-720 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593 |
container_end_page | 720 |
container_issue | 3-4 |
container_start_page | 715 |
container_title | Journal of low temperature physics |
container_volume | 151 |
creator | McCammon, D. Barger, K. Brandl, D. E. Brekosky, R. P. Crowder, S. G. Gygax, J. D. Kelley, R. L. Kilbourne, C. A. Lindeman, M. A. Porter, F. S. Rocks, L. E. Szymkowiak, A. E. |
description | We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm
2
, making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm
−2
is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have >95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary. |
doi_str_mv | 10.1007/s10909-008-9734-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32711678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32711678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx84mbwTxPb3FBVoFIFAoqEuFiu47QpSVxsB7Vvj6Nw5rQa7cxq5wPgkuBrgjG_CQRLLBHGAknOJig7AiOScYY4y_gxGGFMKaJUklNwFsIWYyxFzkbgc7mx8AN5fYAvnW5j18Cprp2vGhuth2-ua4uqXcNXZ75shLP9zva7Nt7CebPz7sf2IsDSeRjTqSe7j_C-rtabeA5OSl0He_E3x-D9fracPqLF88N8erdAhhEZkdZSi1LyPMtlJihPihkrJZcTMjEFzpghuWGiLAhmmhBR8hUv6IrmxohVJtkYXA130zvfnQ1RNVUwtq51a10XFKOckJyLZCSD0XgXgrel2qUu2h8UwaqnqAaKKlFUPUWVpQwdMiF527X1aus636Y-_4R-ATaHdQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32711678</pqid></control><display><type>article</type><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><source>Springer Nature</source><creator>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</creator><creatorcontrib>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</creatorcontrib><description>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm
2
, making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm
−2
is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have >95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-008-9734-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy</subject><ispartof>Journal of low temperature physics, 2008-05, Vol.151 (3-4), p.715-720</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</citedby><cites>FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>McCammon, D.</creatorcontrib><creatorcontrib>Barger, K.</creatorcontrib><creatorcontrib>Brandl, D. E.</creatorcontrib><creatorcontrib>Brekosky, R. P.</creatorcontrib><creatorcontrib>Crowder, S. G.</creatorcontrib><creatorcontrib>Gygax, J. D.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Kilbourne, C. A.</creatorcontrib><creatorcontrib>Lindeman, M. A.</creatorcontrib><creatorcontrib>Porter, F. S.</creatorcontrib><creatorcontrib>Rocks, L. E.</creatorcontrib><creatorcontrib>Szymkowiak, A. E.</creatorcontrib><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm
2
, making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm
−2
is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have >95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx84mbwTxPb3FBVoFIFAoqEuFiu47QpSVxsB7Vvj6Nw5rQa7cxq5wPgkuBrgjG_CQRLLBHGAknOJig7AiOScYY4y_gxGGFMKaJUklNwFsIWYyxFzkbgc7mx8AN5fYAvnW5j18Cprp2vGhuth2-ua4uqXcNXZ75shLP9zva7Nt7CebPz7sf2IsDSeRjTqSe7j_C-rtabeA5OSl0He_E3x-D9fracPqLF88N8erdAhhEZkdZSi1LyPMtlJihPihkrJZcTMjEFzpghuWGiLAhmmhBR8hUv6IrmxohVJtkYXA130zvfnQ1RNVUwtq51a10XFKOckJyLZCSD0XgXgrel2qUu2h8UwaqnqAaKKlFUPUWVpQwdMiF527X1aus636Y-_4R-ATaHdQM</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>McCammon, D.</creator><creator>Barger, K.</creator><creator>Brandl, D. E.</creator><creator>Brekosky, R. P.</creator><creator>Crowder, S. G.</creator><creator>Gygax, J. D.</creator><creator>Kelley, R. L.</creator><creator>Kilbourne, C. A.</creator><creator>Lindeman, M. A.</creator><creator>Porter, F. S.</creator><creator>Rocks, L. E.</creator><creator>Szymkowiak, A. E.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080501</creationdate><title>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</title><author>McCammon, D. ; Barger, K. ; Brandl, D. E. ; Brekosky, R. P. ; Crowder, S. G. ; Gygax, J. D. ; Kelley, R. L. ; Kilbourne, C. A. ; Lindeman, M. A. ; Porter, F. S. ; Rocks, L. E. ; Szymkowiak, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCammon, D.</creatorcontrib><creatorcontrib>Barger, K.</creatorcontrib><creatorcontrib>Brandl, D. E.</creatorcontrib><creatorcontrib>Brekosky, R. P.</creatorcontrib><creatorcontrib>Crowder, S. G.</creatorcontrib><creatorcontrib>Gygax, J. D.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Kilbourne, C. A.</creatorcontrib><creatorcontrib>Lindeman, M. A.</creatorcontrib><creatorcontrib>Porter, F. S.</creatorcontrib><creatorcontrib>Rocks, L. E.</creatorcontrib><creatorcontrib>Szymkowiak, A. E.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCammon, D.</au><au>Barger, K.</au><au>Brandl, D. E.</au><au>Brekosky, R. P.</au><au>Crowder, S. G.</au><au>Gygax, J. D.</au><au>Kelley, R. L.</au><au>Kilbourne, C. A.</au><au>Lindeman, M. A.</au><au>Porter, F. S.</au><au>Rocks, L. E.</au><au>Szymkowiak, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>151</volume><issue>3-4</issue><spage>715</spage><epage>720</epage><pages>715-720</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We have developed a new calorimeter array to increase our collecting area by a factor of four. The 6×6 pixel device has a total area of 144 mm
2
, making it one of the largest X-ray microcalorimeter arrays yet constructed. A relatively thin high-z absorber consisting of a 0.7 μm HgTe layer supported on 15 μm high-purity silicon provides good efficiency up to photon energies of 1.5 keV. The heat capacity of this composite is low enough to obtain an energy resolution of ∼6 eV FWHM on the 2 mm×2 mm pixels when operated at a base temperature of 50 mK. The infrared blocking filters have also been improved. Room temperature radiation must be attenuated by about 9 orders of magnitude between 2 μm and 2 cm to avoid having photon shot noise dominate the detectornoise. Accomplishing this while maintaining a high transmission for very soft X-rays that can penetrate only a few μg cm
−2
is a problem common to all soft X-ray calorimeters that observe external targets. We are constructing monolithic silicon two-layer support meshes with a 350 μm pitch front layer on a 5 mm pitch backing layer. These are 98% open and have >95% effective transmission over a 60° field of view, while providing robust support for 38 mm diameter filters consisting of 20 nm of aluminum on 50 nm of polyimide. Five of these filters in series provide the necessary infrared attenuation. Integral deicing heaters are ion implanted in the fine mesh to remove contamination when necessary.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10909-008-9734-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2008-05, Vol.151 (3-4), p.715-720 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_miscellaneous_32711678 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Magnetic Materials Magnetism Physics Physics and Astronomy |
title | The X-ray Quantum Calorimeter Sounding Rocket Experiment: Improvements for the Next Flight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20X-ray%20Quantum%20Calorimeter%20Sounding%20Rocket%20Experiment:%20Improvements%20for%20the%20Next%20Flight&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=McCammon,%20D.&rft.date=2008-05-01&rft.volume=151&rft.issue=3-4&rft.spage=715&rft.epage=720&rft.pages=715-720&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-008-9734-5&rft_dat=%3Cproquest_cross%3E32711678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-aa9a8f97656958279a83ce9979414cd053c16c38fd103a118f7b7d2b26cc8b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=32711678&rft_id=info:pmid/&rfr_iscdi=true |