Loading…
Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals
Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH2-catalyst absorbing materials were prepared by ball milling of pure MgH2 with hy...
Saved in:
Published in: | Journal of alloys and compounds 2008-05, Vol.455 (1-2), p.432-439 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH2-catalyst absorbing materials were prepared by ball milling of pure MgH2 with hydrided Zr47Ni53, Zr9Ni11, and other investigated alloys. The nanostructured MgH2-intermetallic systems were tested at 250 deg C and catalyst addition of eutectoid Zr47Ni53 resulted in the fastest desorption time and highest initial desorption rate. Also, the catalyzed Mg-hydride with activated Zr9Ni11 and Zr7Ni10 phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed ZrxNiy catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2007.01.138 |