Loading…

Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy

To achieve very low ohmic contact resistance, an n + -GaN layer was selectively deposited using plasma-assisted molecular beam epitaxy (PAMBE). During this process polycrystalline GaN grew on the patterned SiO 2 region, which was subsequently removed by a heated KOH solution, resulting in damage to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2008-05, Vol.37 (5), p.635-640
Main Authors: Seo, Hui-Chan, Hong, Seung Jae, Chapman, Patrick, Kim, Kyekyoon(Kevin)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13
cites cdi_FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13
container_end_page 640
container_issue 5
container_start_page 635
container_title Journal of electronic materials
container_volume 37
creator Seo, Hui-Chan
Hong, Seung Jae
Chapman, Patrick
Kim, Kyekyoon(Kevin)
description To achieve very low ohmic contact resistance, an n + -GaN layer was selectively deposited using plasma-assisted molecular beam epitaxy (PAMBE). During this process polycrystalline GaN grew on the patterned SiO 2 region, which was subsequently removed by a heated KOH solution, resulting in damage to the n + -GaN surface. To prevent this damage, an additional SiO 2 layer was selectively deposited only on the n + -GaN region. To optimize the fabrication process the KOH etching time and n + -GaN layer thickness were adjusted. This damage-proof scheme resulted in a specific contact resistance of 4.6 × 10 −7 Ω cm 2 . In comparison, the resistance with the KOH etching damage was 4.9 × 10 −6  Ω cm 2 to 24 × 10 −6  Ω cm 2 . The KOH etching produced a large number of pits (4.1 × 10 8  cm −2 ) and degraded the current transport. X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectrometry (SIMS) analysis indicated that KOH etching was very effective in removing the oxide from the GaN surface and that the O-H bonding at the GaN surface was likely responsible for the degraded contact performance. The optimum n + -GaN thickness was found to be 54 nm.
doi_str_mv 10.1007/s11664-008-0390-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32831849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32831849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13</originalsourceid><addsrcrecordid>eNp9kcFO4zAQhq0VSFtgH2BvPnFBBk-cuM6xFChIZVstIO3Ncp1JCUriYrtAHoT3xVU572mk0ff_o9FHyG_g58D5-CIASJkzzhXjouRs-EFGUOSCgZL_DsiICwmsyETxkxyF8MI5FKBgRD5vnO9MbFxPXU3n7p39xdCEaHqLdPHcNZZOXR-NjXQ10CvTmTWypXcJfsAWbWzekE08Gjrz7j0-71oemn7dIpv6IfW0tD9jM_OHPoW0psvWhM6wSdgdwYreu1SybY2nl2g6er1povkYTshhbdqAv77nMXm6uX6c3rL5YnY3ncyZFVBGJkolOdSVVZZnkBUgs8LKGgoFq1yO0XBIez4WucrsSlbSYiVVWVZ5mQAL4pic7ns33r1uMUTdNcFi25oe3TZokSkBKi8TCHvQeheCx1pvfNMZP2jgeidA7wXoJEDvBOghZbJ9JiS2X6PXL27r-_TPf0JfE-2Jjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32831849</pqid></control><display><type>article</type><title>Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy</title><source>Springer Link</source><creator>Seo, Hui-Chan ; Hong, Seung Jae ; Chapman, Patrick ; Kim, Kyekyoon(Kevin)</creator><creatorcontrib>Seo, Hui-Chan ; Hong, Seung Jae ; Chapman, Patrick ; Kim, Kyekyoon(Kevin)</creatorcontrib><description>To achieve very low ohmic contact resistance, an n + -GaN layer was selectively deposited using plasma-assisted molecular beam epitaxy (PAMBE). During this process polycrystalline GaN grew on the patterned SiO 2 region, which was subsequently removed by a heated KOH solution, resulting in damage to the n + -GaN surface. To prevent this damage, an additional SiO 2 layer was selectively deposited only on the n + -GaN region. To optimize the fabrication process the KOH etching time and n + -GaN layer thickness were adjusted. This damage-proof scheme resulted in a specific contact resistance of 4.6 × 10 −7 Ω cm 2 . In comparison, the resistance with the KOH etching damage was 4.9 × 10 −6  Ω cm 2 to 24 × 10 −6  Ω cm 2 . The KOH etching produced a large number of pits (4.1 × 10 8  cm −2 ) and degraded the current transport. X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectrometry (SIMS) analysis indicated that KOH etching was very effective in removing the oxide from the GaN surface and that the O-H bonding at the GaN surface was likely responsible for the degraded contact performance. The optimum n + -GaN thickness was found to be 54 nm.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-008-0390-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2008-05, Vol.37 (5), p.635-640</ispartof><rights>TMS 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13</citedby><cites>FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Seo, Hui-Chan</creatorcontrib><creatorcontrib>Hong, Seung Jae</creatorcontrib><creatorcontrib>Chapman, Patrick</creatorcontrib><creatorcontrib>Kim, Kyekyoon(Kevin)</creatorcontrib><title>Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>To achieve very low ohmic contact resistance, an n + -GaN layer was selectively deposited using plasma-assisted molecular beam epitaxy (PAMBE). During this process polycrystalline GaN grew on the patterned SiO 2 region, which was subsequently removed by a heated KOH solution, resulting in damage to the n + -GaN surface. To prevent this damage, an additional SiO 2 layer was selectively deposited only on the n + -GaN region. To optimize the fabrication process the KOH etching time and n + -GaN layer thickness were adjusted. This damage-proof scheme resulted in a specific contact resistance of 4.6 × 10 −7 Ω cm 2 . In comparison, the resistance with the KOH etching damage was 4.9 × 10 −6  Ω cm 2 to 24 × 10 −6  Ω cm 2 . The KOH etching produced a large number of pits (4.1 × 10 8  cm −2 ) and degraded the current transport. X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectrometry (SIMS) analysis indicated that KOH etching was very effective in removing the oxide from the GaN surface and that the O-H bonding at the GaN surface was likely responsible for the degraded contact performance. The optimum n + -GaN thickness was found to be 54 nm.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO4zAQhq0VSFtgH2BvPnFBBk-cuM6xFChIZVstIO3Ncp1JCUriYrtAHoT3xVU572mk0ff_o9FHyG_g58D5-CIASJkzzhXjouRs-EFGUOSCgZL_DsiICwmsyETxkxyF8MI5FKBgRD5vnO9MbFxPXU3n7p39xdCEaHqLdPHcNZZOXR-NjXQ10CvTmTWypXcJfsAWbWzekE08Gjrz7j0-71oemn7dIpv6IfW0tD9jM_OHPoW0psvWhM6wSdgdwYreu1SybY2nl2g6er1povkYTshhbdqAv77nMXm6uX6c3rL5YnY3ncyZFVBGJkolOdSVVZZnkBUgs8LKGgoFq1yO0XBIez4WucrsSlbSYiVVWVZ5mQAL4pic7ns33r1uMUTdNcFi25oe3TZokSkBKi8TCHvQeheCx1pvfNMZP2jgeidA7wXoJEDvBOghZbJ9JiS2X6PXL27r-_TPf0JfE-2Jjw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Seo, Hui-Chan</creator><creator>Hong, Seung Jae</creator><creator>Chapman, Patrick</creator><creator>Kim, Kyekyoon(Kevin)</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080501</creationdate><title>Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy</title><author>Seo, Hui-Chan ; Hong, Seung Jae ; Chapman, Patrick ; Kim, Kyekyoon(Kevin)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Hui-Chan</creatorcontrib><creatorcontrib>Hong, Seung Jae</creatorcontrib><creatorcontrib>Chapman, Patrick</creatorcontrib><creatorcontrib>Kim, Kyekyoon(Kevin)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Hui-Chan</au><au>Hong, Seung Jae</au><au>Chapman, Patrick</au><au>Kim, Kyekyoon(Kevin)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>37</volume><issue>5</issue><spage>635</spage><epage>640</epage><pages>635-640</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>To achieve very low ohmic contact resistance, an n + -GaN layer was selectively deposited using plasma-assisted molecular beam epitaxy (PAMBE). During this process polycrystalline GaN grew on the patterned SiO 2 region, which was subsequently removed by a heated KOH solution, resulting in damage to the n + -GaN surface. To prevent this damage, an additional SiO 2 layer was selectively deposited only on the n + -GaN region. To optimize the fabrication process the KOH etching time and n + -GaN layer thickness were adjusted. This damage-proof scheme resulted in a specific contact resistance of 4.6 × 10 −7 Ω cm 2 . In comparison, the resistance with the KOH etching damage was 4.9 × 10 −6  Ω cm 2 to 24 × 10 −6  Ω cm 2 . The KOH etching produced a large number of pits (4.1 × 10 8  cm −2 ) and degraded the current transport. X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectrometry (SIMS) analysis indicated that KOH etching was very effective in removing the oxide from the GaN surface and that the O-H bonding at the GaN surface was likely responsible for the degraded contact performance. The optimum n + -GaN thickness was found to be 54 nm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-008-0390-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2008-05, Vol.37 (5), p.635-640
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_32831849
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Solid State Physics
title Formation of Low-Resistance Ohmic Contact by Damage-Proof Selective-Area Growth of Single-Crystal n+-GaN Using Plasma-Assisted Molecular Beam Epitaxy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Low-Resistance%20Ohmic%20Contact%20by%20Damage-Proof%20Selective-Area%20Growth%20of%20Single-Crystal%20n+-GaN%20Using%20Plasma-Assisted%20Molecular%20Beam%20Epitaxy&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Seo,%20Hui-Chan&rft.date=2008-05-01&rft.volume=37&rft.issue=5&rft.spage=635&rft.epage=640&rft.pages=635-640&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-008-0390-y&rft_dat=%3Cproquest_cross%3E32831849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-398601fdc8c021251625c6f1581b467ea01021073482cb6d6ced6899d491b4c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=32831849&rft_id=info:pmid/&rfr_iscdi=true