Loading…

Delineation of spatial redox zones using discriminant analysis and geochemical modelling in arsenic-affected alluvial aquifers

This study characterized the redox conditions in arsenic-affected groundwater aquifers of the Lanyang plain, Taiwan. Discriminant analysis was adopted to delineate three redox zones (oxidative, transitional and reductive zones) in different aquifers and yielded 92·3% correctness on groundwater quali...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2008-07, Vol.22 (16), p.3029-3041
Main Authors: Lee, Jin-Jing, Jang, Cheng-Shin, Wang, Sheng-Wei, Liang, Chin-Ping, Liu, Chen-Wuing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study characterized the redox conditions in arsenic-affected groundwater aquifers of the Lanyang plain, Taiwan. Discriminant analysis was adopted to delineate three redox zones (oxidative, transitional and reductive zones) in different aquifers and yielded 92·3% correctness on groundwater quality data. Arsenic is mainly distributed in the reductive zone, and arsenic distribution in the shallow aquifer is mainly affected by surface activities. According to PHREEQC modelling results, possible mechanisms for arsenic release to groundwater in Lanyang plain are explored. Arsenic released to groundwater in the oxidative zone (zone 1) is primarily caused by the oxidations of arsenic-bearing pyrite minerals, and arsenate is the predominant species. While the reductive dissolution of Fe-oxides are responsible for the high arsenic concentration found in the transitional and reductive zones (zones 2 and 3), arsenite is the predominant species. The reduction potential of groundwater rises as the depths and zones increase. Some sulphates may be reduced to form sulphide ions, which then react with arsenic to form arseno-sulphide deposits (such as realgar, orpiment) and then slightly lower groundwater arsenic concentrations. A conceptual diagram which summarized the possible release processes of arsenic in different redox zones along groundwater flow in Lanyang plain is postulated. Arsenic-bearing pyrite and arsenopyrite (FeAsS) are oxidized as they are exposed to the infiltrated oxygenated rainwater, releasing soluble arsenate Fe(II) and SO₄²⁻ into zone 1. The dissolution of arsenic-rich Fe-oxides due to the onset of reducing conditions in zones 2 and 3 is responsible for the mobility of arsenic and likely to be the primary mechanism of arsenic release to groundwater in the Lanyang plain Copyright © 2007 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.6884