Loading…
Selective transmission and enhanced thermal conductance of ballistic phonon by nanocavities embedded in a narrow constriction
The effects of nanocavities embedded in a narrow constriction on ballistic phonon transport in a semiconductor nanowire are investigated. It is shown that when more than one nanocavity is embedded in a narrow constriction with a fixed length, the nanowire has selective transmission and filter action...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2009-01, Vol.42 (1), p.015101-015101 (5) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of nanocavities embedded in a narrow constriction on ballistic phonon transport in a semiconductor nanowire are investigated. It is shown that when more than one nanocavity is embedded in a narrow constriction with a fixed length, the nanowire has selective transmission and filter actions for the ballistic phonon. The number of resonant transmission peaks increases with the number n of cavities, while the frequencies of the main peaks are independent of n. The thermal conductance can be enhanced significantly, and the enhancement alters in different temperature ranges with the number n of cavities, depending on the competition between the transmission enhancement and scatter enhancement of the ballistic phonon. This structure may be a promising candidate for selective frequency generator and filter for the ballistic phonon in nanophononics. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/42/1/015101 |