Loading…

Modelling of ductile fracture initiation in strength mismatched welded joint

In this paper, the effect of strength mismatch and width of the welded joints on the stress–strain distribution in the crack tip region has been discussed. The single-edge notched bend (SENB) specimens (precrack length a 0/ W = 0.32) were experimentally and numerically analysed. The model of local a...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2008-07, Vol.75 (11), p.3499-3510
Main Authors: Rakin, M., Gubeljak, N., Dobrojević, M., Sedmak, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the effect of strength mismatch and width of the welded joints on the stress–strain distribution in the crack tip region has been discussed. The single-edge notched bend (SENB) specimens (precrack length a 0/ W = 0.32) were experimentally and numerically analysed. The model of local approach to fracture, proposed by Gurson, Tvergaard and Needleman, was used. High-strength low-alloyed (HSLA) steel was used as a base metal in quenched and tempered condition. The flux-cored arc-welding process in shielding gas was used. Two different fillers were selected to make over- and undermatched weld metal. The experimental analysis of fracture behaviour of the over- and undermatched welded joints was followed by numerical computations of void volume fraction in front of the crack tip. The critical void volume fraction, f c, used in prediction of the crack growth initiation on the SENB specimen had been previously determined on a round smooth specimen. Three widths of weld metal were considered: 6, 12 and 18 mm. A comparison of the crack tip opening displacement (CTOD) values corresponding to crack initiation in the SENB specimens is given, as determined both experimentally and using the GTN model.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2007.04.026