Loading…
Modified LPE system used to diffuse Cd to obtain InSb infrared detectors
We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be perf...
Saved in:
Published in: | Journal of crystal growth 2008-04, Vol.310 (7), p.1657-1663 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03 |
container_end_page | 1663 |
container_issue | 7 |
container_start_page | 1657 |
container_title | Journal of crystal growth |
container_volume | 310 |
creator | Guimarães, Sonia de Lima, Joaquim Tavares Petoilho, José Carlos de Lucena, Emerson Ferreira Hwang, Míriam Kasumi Campos, Élson |
description | We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10
7
cm
Hz
1/2/W as detectivity value and higher IR spectral response at 4.6
μm, and those produced with the second 2.8×10
9
cm
Hz
1/2/W, at 4.4
μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS). |
doi_str_mv | 10.1016/j.jcrysgro.2007.11.176 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33018163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024807011657</els_id><sourcerecordid>33018163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_Qfait11nku3u9qYUtYWKgnoOaTKRLO2mJluh_97UVq9eMhnme3mZx9glQoGA1U1btDps40fwBQeoC8QC6-qIDbCpRT4C4MdskE6eAy-bU3YWYwuQlAgDNn3yxllHJpu_3GdxG3taZZuY-t5naWLTPZv8dH7RK9dls-51kbnOBhUSZagn3fsQz9mJVctIF4c6ZO8P92-TaT5_fpxN7ua5FhX2-dgKW2IlShQ1aaor4paXSpWEegwGOBmb_iaE4WMhNFiuYFHaEVJTERGIIbvev7sO_nNDsZcrFzUtl6ojv4lSCMAmGSSw2oM6-BgDWbkObqXCViLIXXCylb_ByV1wElGm4JLw6uCgolbLtGinXfxTc-BVU2KTuNs9R2ndL0dBRu2o02RcSJlI491_Vt-ezIbi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33018163</pqid></control><display><type>article</type><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><source>ScienceDirect Journals</source><creator>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</creator><creatorcontrib>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</creatorcontrib><description>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10
7
cm
Hz
1/2/W as detectivity value and higher IR spectral response at 4.6
μm, and those produced with the second 2.8×10
9
cm
Hz
1/2/W, at 4.4
μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2007.11.176</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Atomic force microscopy ; A1. Optical microscopy ; A1. X-ray diffraction ; A3. Vapor phase epitaxy ; Applied sciences ; B1. Cd compounds ; B1. InSb ; B1. Te ; B3. Homojunctions Semiconductor Infrared devices ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Electronics ; Exact sciences and technology ; Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optoelectronic devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Journal of crystal growth, 2008-04, Vol.310 (7), p.1657-1663</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20268418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guimarães, Sonia</creatorcontrib><creatorcontrib>de Lima, Joaquim Tavares</creatorcontrib><creatorcontrib>Petoilho, José Carlos</creatorcontrib><creatorcontrib>de Lucena, Emerson Ferreira</creatorcontrib><creatorcontrib>Hwang, Míriam Kasumi</creatorcontrib><creatorcontrib>Campos, Élson</creatorcontrib><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><title>Journal of crystal growth</title><description>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10
7
cm
Hz
1/2/W as detectivity value and higher IR spectral response at 4.6
μm, and those produced with the second 2.8×10
9
cm
Hz
1/2/W, at 4.4
μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</description><subject>A1. Atomic force microscopy</subject><subject>A1. Optical microscopy</subject><subject>A1. X-ray diffraction</subject><subject>A3. Vapor phase epitaxy</subject><subject>Applied sciences</subject><subject>B1. Cd compounds</subject><subject>B1. InSb</subject><subject>B1. Te</subject><subject>B3. Homojunctions Semiconductor Infrared devices</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_Qfait11nku3u9qYUtYWKgnoOaTKRLO2mJluh_97UVq9eMhnme3mZx9glQoGA1U1btDps40fwBQeoC8QC6-qIDbCpRT4C4MdskE6eAy-bU3YWYwuQlAgDNn3yxllHJpu_3GdxG3taZZuY-t5naWLTPZv8dH7RK9dls-51kbnOBhUSZagn3fsQz9mJVctIF4c6ZO8P92-TaT5_fpxN7ua5FhX2-dgKW2IlShQ1aaor4paXSpWEegwGOBmb_iaE4WMhNFiuYFHaEVJTERGIIbvev7sO_nNDsZcrFzUtl6ojv4lSCMAmGSSw2oM6-BgDWbkObqXCViLIXXCylb_ByV1wElGm4JLw6uCgolbLtGinXfxTc-BVU2KTuNs9R2ndL0dBRu2o02RcSJlI491_Vt-ezIbi</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Guimarães, Sonia</creator><creator>de Lima, Joaquim Tavares</creator><creator>Petoilho, José Carlos</creator><creator>de Lucena, Emerson Ferreira</creator><creator>Hwang, Míriam Kasumi</creator><creator>Campos, Élson</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080401</creationdate><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><author>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. Atomic force microscopy</topic><topic>A1. Optical microscopy</topic><topic>A1. X-ray diffraction</topic><topic>A3. Vapor phase epitaxy</topic><topic>Applied sciences</topic><topic>B1. Cd compounds</topic><topic>B1. InSb</topic><topic>B1. Te</topic><topic>B3. Homojunctions Semiconductor Infrared devices</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Sonia</creatorcontrib><creatorcontrib>de Lima, Joaquim Tavares</creatorcontrib><creatorcontrib>Petoilho, José Carlos</creatorcontrib><creatorcontrib>de Lucena, Emerson Ferreira</creatorcontrib><creatorcontrib>Hwang, Míriam Kasumi</creatorcontrib><creatorcontrib>Campos, Élson</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Sonia</au><au>de Lima, Joaquim Tavares</au><au>Petoilho, José Carlos</au><au>de Lucena, Emerson Ferreira</au><au>Hwang, Míriam Kasumi</au><au>Campos, Élson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>310</volume><issue>7</issue><spage>1657</spage><epage>1663</epage><pages>1657-1663</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10
7
cm
Hz
1/2/W as detectivity value and higher IR spectral response at 4.6
μm, and those produced with the second 2.8×10
9
cm
Hz
1/2/W, at 4.4
μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2007.11.176</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2008-04, Vol.310 (7), p.1657-1663 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_33018163 |
source | ScienceDirect Journals |
subjects | A1. Atomic force microscopy A1. Optical microscopy A1. X-ray diffraction A3. Vapor phase epitaxy Applied sciences B1. Cd compounds B1. InSb B1. Te B3. Homojunctions Semiconductor Infrared devices Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Electronics Exact sciences and technology Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Materials science Methods of deposition of films and coatings film growth and epitaxy Optoelectronic devices Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology |
title | Modified LPE system used to diffuse Cd to obtain InSb infrared detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20LPE%20system%20used%20to%20diffuse%20Cd%20to%20obtain%20InSb%20infrared%20detectors&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Guimar%C3%A3es,%20Sonia&rft.date=2008-04-01&rft.volume=310&rft.issue=7&rft.spage=1657&rft.epage=1663&rft.pages=1657-1663&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2007.11.176&rft_dat=%3Cproquest_cross%3E33018163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33018163&rft_id=info:pmid/&rfr_iscdi=true |