Loading…

Modified LPE system used to diffuse Cd to obtain InSb infrared detectors

We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be perf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2008-04, Vol.310 (7), p.1657-1663
Main Authors: Guimarães, Sonia, de Lima, Joaquim Tavares, Petoilho, José Carlos, de Lucena, Emerson Ferreira, Hwang, Míriam Kasumi, Campos, Élson
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03
container_end_page 1663
container_issue 7
container_start_page 1657
container_title Journal of crystal growth
container_volume 310
creator Guimarães, Sonia
de Lima, Joaquim Tavares
Petoilho, José Carlos
de Lucena, Emerson Ferreira
Hwang, Míriam Kasumi
Campos, Élson
description We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10 7 cm Hz 1/2/W as detectivity value and higher IR spectral response at 4.6 μm, and those produced with the second 2.8×10 9 cm Hz 1/2/W, at 4.4 μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).
doi_str_mv 10.1016/j.jcrysgro.2007.11.176
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33018163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024807011657</els_id><sourcerecordid>33018163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_Qfait11nku3u9qYUtYWKgnoOaTKRLO2mJluh_97UVq9eMhnme3mZx9glQoGA1U1btDps40fwBQeoC8QC6-qIDbCpRT4C4MdskE6eAy-bU3YWYwuQlAgDNn3yxllHJpu_3GdxG3taZZuY-t5naWLTPZv8dH7RK9dls-51kbnOBhUSZagn3fsQz9mJVctIF4c6ZO8P92-TaT5_fpxN7ua5FhX2-dgKW2IlShQ1aaor4paXSpWEegwGOBmb_iaE4WMhNFiuYFHaEVJTERGIIbvev7sO_nNDsZcrFzUtl6ojv4lSCMAmGSSw2oM6-BgDWbkObqXCViLIXXCylb_ByV1wElGm4JLw6uCgolbLtGinXfxTc-BVU2KTuNs9R2ndL0dBRu2o02RcSJlI491_Vt-ezIbi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33018163</pqid></control><display><type>article</type><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><source>ScienceDirect Journals</source><creator>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</creator><creatorcontrib>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</creatorcontrib><description>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10 7 cm Hz 1/2/W as detectivity value and higher IR spectral response at 4.6 μm, and those produced with the second 2.8×10 9 cm Hz 1/2/W, at 4.4 μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2007.11.176</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Atomic force microscopy ; A1. Optical microscopy ; A1. X-ray diffraction ; A3. Vapor phase epitaxy ; Applied sciences ; B1. Cd compounds ; B1. InSb ; B1. Te ; B3. Homojunctions Semiconductor Infrared devices ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Electronics ; Exact sciences and technology ; Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optoelectronic devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Journal of crystal growth, 2008-04, Vol.310 (7), p.1657-1663</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20268418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guimarães, Sonia</creatorcontrib><creatorcontrib>de Lima, Joaquim Tavares</creatorcontrib><creatorcontrib>Petoilho, José Carlos</creatorcontrib><creatorcontrib>de Lucena, Emerson Ferreira</creatorcontrib><creatorcontrib>Hwang, Míriam Kasumi</creatorcontrib><creatorcontrib>Campos, Élson</creatorcontrib><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><title>Journal of crystal growth</title><description>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10 7 cm Hz 1/2/W as detectivity value and higher IR spectral response at 4.6 μm, and those produced with the second 2.8×10 9 cm Hz 1/2/W, at 4.4 μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</description><subject>A1. Atomic force microscopy</subject><subject>A1. Optical microscopy</subject><subject>A1. X-ray diffraction</subject><subject>A3. Vapor phase epitaxy</subject><subject>Applied sciences</subject><subject>B1. Cd compounds</subject><subject>B1. InSb</subject><subject>B1. Te</subject><subject>B3. Homojunctions Semiconductor Infrared devices</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_Qfait11nku3u9qYUtYWKgnoOaTKRLO2mJluh_97UVq9eMhnme3mZx9glQoGA1U1btDps40fwBQeoC8QC6-qIDbCpRT4C4MdskE6eAy-bU3YWYwuQlAgDNn3yxllHJpu_3GdxG3taZZuY-t5naWLTPZv8dH7RK9dls-51kbnOBhUSZagn3fsQz9mJVctIF4c6ZO8P92-TaT5_fpxN7ua5FhX2-dgKW2IlShQ1aaor4paXSpWEegwGOBmb_iaE4WMhNFiuYFHaEVJTERGIIbvev7sO_nNDsZcrFzUtl6ojv4lSCMAmGSSw2oM6-BgDWbkObqXCViLIXXCylb_ByV1wElGm4JLw6uCgolbLtGinXfxTc-BVU2KTuNs9R2ndL0dBRu2o02RcSJlI491_Vt-ezIbi</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Guimarães, Sonia</creator><creator>de Lima, Joaquim Tavares</creator><creator>Petoilho, José Carlos</creator><creator>de Lucena, Emerson Ferreira</creator><creator>Hwang, Míriam Kasumi</creator><creator>Campos, Élson</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080401</creationdate><title>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</title><author>Guimarães, Sonia ; de Lima, Joaquim Tavares ; Petoilho, José Carlos ; de Lucena, Emerson Ferreira ; Hwang, Míriam Kasumi ; Campos, Élson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. Atomic force microscopy</topic><topic>A1. Optical microscopy</topic><topic>A1. X-ray diffraction</topic><topic>A3. Vapor phase epitaxy</topic><topic>Applied sciences</topic><topic>B1. Cd compounds</topic><topic>B1. InSb</topic><topic>B1. Te</topic><topic>B3. Homojunctions Semiconductor Infrared devices</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Sonia</creatorcontrib><creatorcontrib>de Lima, Joaquim Tavares</creatorcontrib><creatorcontrib>Petoilho, José Carlos</creatorcontrib><creatorcontrib>de Lucena, Emerson Ferreira</creatorcontrib><creatorcontrib>Hwang, Míriam Kasumi</creatorcontrib><creatorcontrib>Campos, Élson</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Sonia</au><au>de Lima, Joaquim Tavares</au><au>Petoilho, José Carlos</au><au>de Lucena, Emerson Ferreira</au><au>Hwang, Míriam Kasumi</au><au>Campos, Élson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified LPE system used to diffuse Cd to obtain InSb infrared detectors</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>310</volume><issue>7</issue><spage>1657</spage><epage>1663</epage><pages>1657-1663</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>We are presenting here p/n junctions obtained with a modified opened liquid-phase epitaxy (LPE) system, used to diffuse indium antimonide (InSb) doped with Cd over InSb doped with Te wafers, in order to make InSb infrared (IR) sensors. This technique has several advantages: the diffusion can be performed in bigger substrate areas improving the device production; this method decreases the device manipulation, decreasing human mistakes and increasing the process reproducibility. The opened LPE in this work produced sensors in the first case with vapor of the diffusion material, coming from a microholed carbon boat full of the diffusion material, over which is positioned the substrate at atmospheric pressure. In the second, the diffusion material is on the bottom of a quartz recipient, and the InSb/Te wafer works as its cover, and vacuum was used. The IR sensors produced with the first method measured 8.9×10 7 cm Hz 1/2/W as detectivity value and higher IR spectral response at 4.6 μm, and those produced with the second 2.8×10 9 cm Hz 1/2/W, at 4.4 μm. Besides the electrical–optical properties, the structural properties of diffused layers were investigated by X-ray diffraction (XRD), scanning electron and atomic force microscopy (SEM, AFM), energy-dispersive and secondary ion mass spectroscopy (EDS, SIMS).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2007.11.176</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2008-04, Vol.310 (7), p.1657-1663
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_33018163
source ScienceDirect Journals
subjects A1. Atomic force microscopy
A1. Optical microscopy
A1. X-ray diffraction
A3. Vapor phase epitaxy
Applied sciences
B1. Cd compounds
B1. InSb
B1. Te
B3. Homojunctions Semiconductor Infrared devices
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in interface structures
Electronics
Exact sciences and technology
Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Optoelectronic devices
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
title Modified LPE system used to diffuse Cd to obtain InSb infrared detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20LPE%20system%20used%20to%20diffuse%20Cd%20to%20obtain%20InSb%20infrared%20detectors&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Guimar%C3%A3es,%20Sonia&rft.date=2008-04-01&rft.volume=310&rft.issue=7&rft.spage=1657&rft.epage=1663&rft.pages=1657-1663&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2007.11.176&rft_dat=%3Cproquest_cross%3E33018163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9f3f41634137ece76e2f24aa4e1c90d02edf00133d2933c0f2a0b4f51e86eee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33018163&rft_id=info:pmid/&rfr_iscdi=true