Loading…

Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3

Hexagonal NaYF4:Ln3+ (Ln3+=Yb3+ and Tm3+) was prepared via solid-state synthesis route. The synthesized powders were identified with X-ray diffraction patterns. Hexagonal phase was obtained by heating the powders at 550°C in reducing atmosphere, and the ions of Yb3+ and Tm3+ were completely incorpor...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2008-02, Vol.368-372, p.398-401
Main Authors: Cheng, Chang Hua, Xiong, Zhao Xian, Wu, You Na
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexagonal NaYF4:Ln3+ (Ln3+=Yb3+ and Tm3+) was prepared via solid-state synthesis route. The synthesized powders were identified with X-ray diffraction patterns. Hexagonal phase was obtained by heating the powders at 550°C in reducing atmosphere, and the ions of Yb3+ and Tm3+ were completely incorporated into the lattice of hexagonal NaYF4 in the doping concentration range. Microstructure of the phosphor was observed by scanning electron microscopy (SEM). Intense blue (1G4→3H6, 1D2→3F4) and weak red (1G4→3F4) upconversion emission of Tm3+ ions with the energy transferred from Yb3+ ions were observed in the phosphor excited with a 980nm continuous wave laser diode. The intensity of blue emission was effectively enhanced by suitable doping of Tm3+ and Yb3+ ions, and strongest blue emission was obtained with the concentration of 0.2mol% Tm3+ and 40mol% Yb3+ doped.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.368-372.398