Loading…

Potential applications of chitosan in veterinary medicine

Chitosan is a partially deacetylated polymer obtained from the alkaline deacetylation of chitin which is a glucose-based unbranched polysaccharide widely distributed in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi. C...

Full description

Saved in:
Bibliographic Details
Published in:Advanced drug delivery reviews 2004-06, Vol.56 (10), p.1467-1480
Main Authors: Şenel, Sevda, McClure, Susan J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chitosan is a partially deacetylated polymer obtained from the alkaline deacetylation of chitin which is a glucose-based unbranched polysaccharide widely distributed in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in fields such as waste and water treatment, agriculture, fabric and textiles, cosmetics, nutritional enhancement, and food processing. In addition to its lack of toxicity and allergenicity, and its biocompatibility, biodegradability and bioactivity make it a very attractive substance for diverse applications as a biomaterial in pharmaceutical and medical fields, where it has been used for systemic and local delivery of drugs and vaccines. It also has bioactive properties in its own right. This paper reviews current veterinary applications for chitosan including wound healing, bone regeneration, analgesic and antimicrobial effects. It also discusses the potential application of chitosan to drug and vaccine delivery in veterinary species. Given the restrictions imposed by financial and animal restraint considerations, especially in farming applications, the veterinary drug delivery areas most likely to benefit from chitosan are the delivery of chemotherapeutics such as antibiotics, antiparasitics, anaesthetics, painkillers and growth promotants to mucosal epithelium for absorption for local or systemic activity, and the delivery of immunomodulatory agents to the mucosal associated lymphoid tissue for induction or modulation of local immune responses. The properties of chitosan expected to enhance these functions are discussed, and the future research directions in this field are indicated.
ISSN:0169-409X
1872-8294
DOI:10.1016/j.addr.2004.02.007