Loading…

A goal-programming approach for design of hybrid cellular manufacturing systems in dual resource constrained environments

In this study, a goal-programming model is proposed for the design of hybrid cellular manufacturing (HCM) systems, in a dual resource constrained environment, considering many real-world application issues. The procedure consists of three phases. Following an initial phase involving a Pareto analysi...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering 2009-03, Vol.56 (2), p.560-575
Main Authors: Satoglu, Sule Itir, Suresh, Nallan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a goal-programming model is proposed for the design of hybrid cellular manufacturing (HCM) systems, in a dual resource constrained environment, considering many real-world application issues. The procedure consists of three phases. Following an initial phase involving a Pareto analysis of demand volumes and volatility, a machine-grouping phase is conducted to form manufacturing cells, and a residual functional layout. In this phase, over-assignment of parts to the cells, machine purchasing cost, and loss of functional synergies are attempted to be minimized. Following the formation of cells and the functional layout, a labor allocation phase is carried out by considering worker capabilities and capacities. The total costs of cross-training, hiring, firing and over-assignment of workers to more than one cell are sought to be minimized. An application of the model on real factory data is also provided in order to demonstrate the utility and possible limitations. The industrial problem was solved using professional mathematical programming software.
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2008.06.009