Loading…

Canard cycles in the presence of slow dynamics with singularities

We study the cyclicity of limit periodic sets that occur in families of vector fields of slow–fast type. The limit periodic sets are formed by a fast orbit and a curve of singularities containing a unique turning point. At this turning point a stability change takes place: on one side of the turning...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2008-04, Vol.138 (2), p.265-299
Main Authors: De Maesschalck, P., Dumortier, F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-96a342879144172a3936629fedc602b9313186c844ef4d92268fdc29b73251f43
cites
container_end_page 299
container_issue 2
container_start_page 265
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 138
creator De Maesschalck, P.
Dumortier, F.
description We study the cyclicity of limit periodic sets that occur in families of vector fields of slow–fast type. The limit periodic sets are formed by a fast orbit and a curve of singularities containing a unique turning point. At this turning point a stability change takes place: on one side of the turning point the dynamics point strongly towards the curve of singularities; on the other side the dynamics point away from the curve of singularities. The presence of periodic orbits in a perturbation is related to the presence of canard orbits passing near this turning point, i.e. orbits that stay close to the curve of singularities despite the exponentially strong repulsion near this curve. All existing results deal with a non-zero slow movement, permitting a good estimate of the cyclicity by considering the slow-divergence integral along the curve of singularities. In this paper we study what happens when the slow dynamics exhibit singularities. In particular, our study includes the cyclicity of the slow–fast two-saddle cycle, formed by a regular saddle connection (the fast part) and a part of the curve of singularities (the slow part). We see that the relevant information is no longer merely contained in the slow-divergence integral.
doi_str_mv 10.1017/S0308210506000199
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33235619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210506000199</cupid><sourcerecordid>2075358931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-96a342879144172a3936629fedc602b9313186c844ef4d92268fdc29b73251f43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF1w4W40r8ljWYqtQq2Ij4WbkGYybeo8ajJD7b93SouC4uouznfuORwAzjG6wgiL6ydEkSQYpYgjhLBSB6CHmaCJwIQdgt5WTrb6MTiJcdkxXKaiBwZDU5mQQbuxhYvQV7BZOLgKLrrKOljnMBb1GmabypTeRrj2zQJGX83bwgTfeBdPwVFuiujO9rcPXkY3z8PbZPIwvhsOJomlMm0SxQ1lRAqFGcOCGKoo50TlLrMckZmimGLJrWTM5SxThHCZZ5aomaAkxTmjfXC5-7sK9UfrYqNLH60rClO5uo2aUkJTjlUHXvwCl3Ubqq6b7pIkR5iRDsI7yIY6xuByvQq-NGGjMdLbRfWfRTtPsvP42LjPb4MJ75oLKlLNx4_6_o2PRq9ToqcdT_cZppwFn83dT5P_U74AKFGEUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>602860142</pqid></control><display><type>article</type><title>Canard cycles in the presence of slow dynamics with singularities</title><source>Cambridge Journals Online</source><creator>De Maesschalck, P. ; Dumortier, F.</creator><creatorcontrib>De Maesschalck, P. ; Dumortier, F.</creatorcontrib><description>We study the cyclicity of limit periodic sets that occur in families of vector fields of slow–fast type. The limit periodic sets are formed by a fast orbit and a curve of singularities containing a unique turning point. At this turning point a stability change takes place: on one side of the turning point the dynamics point strongly towards the curve of singularities; on the other side the dynamics point away from the curve of singularities. The presence of periodic orbits in a perturbation is related to the presence of canard orbits passing near this turning point, i.e. orbits that stay close to the curve of singularities despite the exponentially strong repulsion near this curve. All existing results deal with a non-zero slow movement, permitting a good estimate of the cyclicity by considering the slow-divergence integral along the curve of singularities. In this paper we study what happens when the slow dynamics exhibit singularities. In particular, our study includes the cyclicity of the slow–fast two-saddle cycle, formed by a regular saddle connection (the fast part) and a part of the curve of singularities (the slow part). We see that the relevant information is no longer merely contained in the slow-divergence integral.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210506000199</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Mathematics ; Vector space</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.265-299</ispartof><rights>2008 Royal Society of Edinburgh</rights><rights>Copyright Cambridge University Press Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-96a342879144172a3936629fedc602b9313186c844ef4d92268fdc29b73251f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210506000199/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>De Maesschalck, P.</creatorcontrib><creatorcontrib>Dumortier, F.</creatorcontrib><title>Canard cycles in the presence of slow dynamics with singularities</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We study the cyclicity of limit periodic sets that occur in families of vector fields of slow–fast type. The limit periodic sets are formed by a fast orbit and a curve of singularities containing a unique turning point. At this turning point a stability change takes place: on one side of the turning point the dynamics point strongly towards the curve of singularities; on the other side the dynamics point away from the curve of singularities. The presence of periodic orbits in a perturbation is related to the presence of canard orbits passing near this turning point, i.e. orbits that stay close to the curve of singularities despite the exponentially strong repulsion near this curve. All existing results deal with a non-zero slow movement, permitting a good estimate of the cyclicity by considering the slow-divergence integral along the curve of singularities. In this paper we study what happens when the slow dynamics exhibit singularities. In particular, our study includes the cyclicity of the slow–fast two-saddle cycle, formed by a regular saddle connection (the fast part) and a part of the curve of singularities (the slow part). We see that the relevant information is no longer merely contained in the slow-divergence integral.</description><subject>Mathematics</subject><subject>Vector space</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF1w4W40r8ljWYqtQq2Ij4WbkGYybeo8ajJD7b93SouC4uouznfuORwAzjG6wgiL6ydEkSQYpYgjhLBSB6CHmaCJwIQdgt5WTrb6MTiJcdkxXKaiBwZDU5mQQbuxhYvQV7BZOLgKLrrKOljnMBb1GmabypTeRrj2zQJGX83bwgTfeBdPwVFuiujO9rcPXkY3z8PbZPIwvhsOJomlMm0SxQ1lRAqFGcOCGKoo50TlLrMckZmimGLJrWTM5SxThHCZZ5aomaAkxTmjfXC5-7sK9UfrYqNLH60rClO5uo2aUkJTjlUHXvwCl3Ubqq6b7pIkR5iRDsI7yIY6xuByvQq-NGGjMdLbRfWfRTtPsvP42LjPb4MJ75oLKlLNx4_6_o2PRq9ToqcdT_cZppwFn83dT5P_U74AKFGEUg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>De Maesschalck, P.</creator><creator>Dumortier, F.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200804</creationdate><title>Canard cycles in the presence of slow dynamics with singularities</title><author>De Maesschalck, P. ; Dumortier, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-96a342879144172a3936629fedc602b9313186c844ef4d92268fdc29b73251f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Maesschalck, P.</creatorcontrib><creatorcontrib>Dumortier, F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Maesschalck, P.</au><au>Dumortier, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canard cycles in the presence of slow dynamics with singularities</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2008-04</date><risdate>2008</risdate><volume>138</volume><issue>2</issue><spage>265</spage><epage>299</epage><pages>265-299</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We study the cyclicity of limit periodic sets that occur in families of vector fields of slow–fast type. The limit periodic sets are formed by a fast orbit and a curve of singularities containing a unique turning point. At this turning point a stability change takes place: on one side of the turning point the dynamics point strongly towards the curve of singularities; on the other side the dynamics point away from the curve of singularities. The presence of periodic orbits in a perturbation is related to the presence of canard orbits passing near this turning point, i.e. orbits that stay close to the curve of singularities despite the exponentially strong repulsion near this curve. All existing results deal with a non-zero slow movement, permitting a good estimate of the cyclicity by considering the slow-divergence integral along the curve of singularities. In this paper we study what happens when the slow dynamics exhibit singularities. In particular, our study includes the cyclicity of the slow–fast two-saddle cycle, formed by a regular saddle connection (the fast part) and a part of the curve of singularities (the slow part). We see that the relevant information is no longer merely contained in the slow-divergence integral.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210506000199</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.265-299
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_miscellaneous_33235619
source Cambridge Journals Online
subjects Mathematics
Vector space
title Canard cycles in the presence of slow dynamics with singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canard%20cycles%20in%20the%20presence%20of%20slow%20dynamics%20with%20singularities&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=De%20Maesschalck,%20P.&rft.date=2008-04&rft.volume=138&rft.issue=2&rft.spage=265&rft.epage=299&rft.pages=265-299&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210506000199&rft_dat=%3Cproquest_cross%3E2075358931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-96a342879144172a3936629fedc602b9313186c844ef4d92268fdc29b73251f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=602860142&rft_id=info:pmid/&rft_cupid=10_1017_S0308210506000199&rfr_iscdi=true