Loading…
Comparative study of Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications
Layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials were synthesized by different synthesis routes using carbonate and hydroxide co-precipitation methods. Physical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2 varied depending on the synthesis method employed. These materials were applied as a positi...
Saved in:
Published in: | Materials chemistry and physics 2008-08, Vol.110 (2-3), p.222-227 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials were synthesized by different synthesis routes using carbonate and hydroxide co-precipitation methods. Physical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2 varied depending on the synthesis method employed. These materials were applied as a positive electrode to an asymmetric electrochemical capacitor with activated carbon as the negative electrode and the electrochemical properties of the capacitor were studied. Li[Ni1/3Co1/3Mn1/3]O2 prepared by the carbonate co-precipitation exhibited higher capacitance and better rate capability with stable cycling retention over 500 cycles than Li[Ni1/3Co1/3Mn1/3]O2 prepared by the hydroxide co-precipitation. The asymmetric electrochemical capacitor (AEC) cell (AC/Li[Ni1/3Co1/3Mn1/3]O2) had a voltage slope from 0.2 to 2.2 V and delivered a capacity of 60 F g-1 with a capacity retention of 88.4% during 500 cycles based on the overall active materials weight. The leakage current was largely decreased for the asymmetric electrochemical capacitor and the maintained voltage was 84.4% during 3 days. |
---|---|
ISSN: | 0254-0584 |
DOI: | 10.1016/j.matchemphys.2008.01.032 |