Loading…

CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants

This work presents and discusses the antiwear behaviour of nanoparticle suspensions in a polyalphaolefin (PAO 6). CuO, ZnO and ZrO2 nanoparticles were separately dispersed at 0.5%, 1.0% and 2.0%wt. in PAO 6 using an ultrasonic probe for 2 min. AW properties were obtained using a TE53SLIM tribometer...

Full description

Saved in:
Bibliographic Details
Published in:Wear 2008-07, Vol.265 (3-4), p.422-428
Main Authors: HERNANDEZ BATTEZ, A, GONZALEZ, R, VIESCA, J. L, FERNANDEZ, J. E, DIAZ FERNANDEZ, J. M, MACHADO, A, CHOU, R, RIBA, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents and discusses the antiwear behaviour of nanoparticle suspensions in a polyalphaolefin (PAO 6). CuO, ZnO and ZrO2 nanoparticles were separately dispersed at 0.5%, 1.0% and 2.0%wt. in PAO 6 using an ultrasonic probe for 2 min. AW properties were obtained using a TE53SLIM tribometer with a block-on-ring configuration. Tests were made under a load of 165 N, sliding speed of 2 m/s and a total distance of 3.066 m. Wear surfaces were analysed by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) after wear tests. The study led to the following conclusions: all nanoparticle suspensions exhibited reductions in friction and wear compared to the base oil; the suspensions with 0.5% of ZnO and ZrO2 had the best general tribological behaviour, exhibiting high friction and wear reduction values even at low deposition levels on the wear surface; CuO suspensions showed the highest friction coefficient and lowest wear per nanoparticle content of 2%; and the antiwear mechanism of nanoparticulate additive was produced by tribo-sintering.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2007.11.013