Loading…
Elastic properties of metal–ceramic nanolaminates measured by nanoindentation
The elastic modulus of metal–ceramic nanolaminates measured by nanoindentation was studied experimentally and numerically. A model system of seven layers of alternating aluminum (Al) and silicon carbide (SiC) films deposited on a silicon (Si) substrate was used. The variation of elastic modulus, mea...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.79-84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The elastic modulus of metal–ceramic nanolaminates measured by nanoindentation was studied experimentally and numerically. A model system of seven layers of alternating aluminum (Al) and silicon carbide (SiC) films deposited on a silicon (Si) substrate was used. The variation of elastic modulus, measured from the indentation unloading, as a function of layer thickness and indentation depth was investigated. Finite element modeling, featuring indentation of the explicit composite structure, was conducted and shown to be in good agreement with the experiment. The numerical result offered further insight into the detailed deformation processes. The effects of the substrate material and pile-up at the indentation edge were seen to play an important role in the modulus determination. Sophisticated stress and deformation fields underneath the indentation developed in the laminated structure. Their evolution during the unloading phase of the indentation was also examined. Salient features which can affect the modulus measurement were discussed. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2008.11.013 |