Loading…
Large-eddy simulation of vortex breakdown in compressible swirling jet flow
Vortex breakdown in a compressible swirling jet flow is investigated by large-eddy simulation (LES) using the approximate deconvolution model. Conditions are chosen similar to recent experimental investigations by Liang and Maxworthy [Liang H, Maxworthy T. An experimental investigation of swirling j...
Saved in:
Published in: | Computers & fluids 2008-08, Vol.37 (7), p.844-856 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vortex breakdown in a compressible swirling jet flow is investigated by large-eddy simulation (LES) using the approximate deconvolution model. Conditions are chosen similar to recent experimental investigations by Liang and Maxworthy [Liang H, Maxworthy T. An experimental investigation of swirling jets. J Fluid Mech 2005;525:115] for incompressible flow. LES results are presented for two simulations of a swirling jet at Mach number
Ma
=
0.6 with and without inflow forcing by imposed linear instability disturbances. Both the forced and the self-excited jet show three-dimensional helical waves developing in the jet breakdown zone. The features observed in the two simulations are compared to each other as well as to the experiments with respect to flow statistics and instability behaviour. Both simulations show favourable qualitative agreement with the experiment. |
---|---|
ISSN: | 0045-7930 1879-0747 |
DOI: | 10.1016/j.compfluid.2007.04.010 |