Loading…
Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators
The secondary flow is frequently used to enhance the convective heat transfer. In this paper, the cross-averaged absolute vorticity flux in the main flow direction is used to specify the intensity of the secondary flow produced by vortex generators that are mounted on a three-row flat tube bank fin...
Saved in:
Published in: | International journal of heat and mass transfer 2009-03, Vol.52 (7), p.1794-1801 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The secondary flow is frequently used to enhance the convective heat transfer. In this paper, the cross-averaged absolute vorticity flux in the main flow direction is used to specify the intensity of the secondary flow produced by vortex generators that are mounted on a three-row flat tube bank fin surfaces. The relationship between the intensity of the secondary flow and the strength of convective heat transfer is studied using a numerical method. The results reveal that cross-averaged absolute vorticity flux in the main flow direction can reflect the intensity of the secondary flow; a significant relationship between this cross-averaged absolute vorticity flux and span-averaged Nusselt number exists for the case studied. This cross-averaged absolute vorticity flux can account only for the secondary flow effects on convective heat transfer but cannot quantify the effects of developing boundary layer on convective heat transfer. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2008.09.029 |