Loading…

On steady states of van der Waals force driven thin film equations

Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmet...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied mathematics 2007-04, Vol.18 (2), p.153-180
Main Authors: JIANG, HUIQIANG, NI, WEI-MING
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3
cites cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3
container_end_page 180
container_issue 2
container_start_page 153
container_title European journal of applied mathematics
container_volume 18
creator JIANG, HUIQIANG
NI, WEI-MING
description Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.
doi_str_mv 10.1017/S0956792507006936
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33366820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792507006936</cupid><sourcerecordid>33366820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLfFg7fo_ssme9Riq1gppQW9LZvkraamSbubFPvt3VJRUDzNYX7z5jEInVNyRQlNrmdExTJRLCYJIVJxeYB6VEgVCcHiQ9Tb2dHOP0Yn3i8IoZwkqoduJzX2LZhiG8S04HFj8cbUuACHn42pPLaNywEXrtxAjdu3ssa2rJYY1p1py6b2p-jIBg7OvrSP5sO7-eA-Gk9GD4ObcZQLztsoZ1khrMoKw2WeJ9RkQggrWAGKpxnjNsmFolJlwKlMleU0VSmIDGgBUma8jy73Z1euWXfgW70sfQ5VZWpoOq8551KmjATw4he4aDpXh9c0I5KnYQUWILqHctd478DqlSuXxm01JXq3qP6zaMhE-0wZFvv4Dhj3rmXCk1jL0VRPh0_qZaQe9Szw_KvDLDNXFq_w88n_LZ__g4Y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206387922</pqid></control><display><type>article</type><title>On steady states of van der Waals force driven thin film equations</title><source>Cambridge University Press</source><creator>JIANG, HUIQIANG ; NI, WEI-MING</creator><creatorcontrib>JIANG, HUIQIANG ; NI, WEI-MING</creatorcontrib><description>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α &gt; 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792507006936</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Fluid dynamics ; Mathematical problems ; Thin films</subject><ispartof>European journal of applied mathematics, 2007-04, Vol.18 (2), p.153-180</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</citedby><cites>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792507006936/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>JIANG, HUIQIANG</creatorcontrib><creatorcontrib>NI, WEI-MING</creatorcontrib><title>On steady states of van der Waals force driven thin film equations</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α &gt; 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</description><subject>Applied mathematics</subject><subject>Fluid dynamics</subject><subject>Mathematical problems</subject><subject>Thin films</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLfFg7fo_ssme9Riq1gppQW9LZvkraamSbubFPvt3VJRUDzNYX7z5jEInVNyRQlNrmdExTJRLCYJIVJxeYB6VEgVCcHiQ9Tb2dHOP0Yn3i8IoZwkqoduJzX2LZhiG8S04HFj8cbUuACHn42pPLaNywEXrtxAjdu3ssa2rJYY1p1py6b2p-jIBg7OvrSP5sO7-eA-Gk9GD4ObcZQLztsoZ1khrMoKw2WeJ9RkQggrWAGKpxnjNsmFolJlwKlMleU0VSmIDGgBUma8jy73Z1euWXfgW70sfQ5VZWpoOq8551KmjATw4he4aDpXh9c0I5KnYQUWILqHctd478DqlSuXxm01JXq3qP6zaMhE-0wZFvv4Dhj3rmXCk1jL0VRPh0_qZaQe9Szw_KvDLDNXFq_w88n_LZ__g4Y-</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>JIANG, HUIQIANG</creator><creator>NI, WEI-MING</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20070401</creationdate><title>On steady states of van der Waals force driven thin film equations</title><author>JIANG, HUIQIANG ; NI, WEI-MING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied mathematics</topic><topic>Fluid dynamics</topic><topic>Mathematical problems</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, HUIQIANG</creatorcontrib><creatorcontrib>NI, WEI-MING</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, HUIQIANG</au><au>NI, WEI-MING</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On steady states of van der Waals force driven thin film equations</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>18</volume><issue>2</issue><spage>153</spage><epage>180</epage><pages>153-180</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α &gt; 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792507006936</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-7925
ispartof European journal of applied mathematics, 2007-04, Vol.18 (2), p.153-180
issn 0956-7925
1469-4425
language eng
recordid cdi_proquest_miscellaneous_33366820
source Cambridge University Press
subjects Applied mathematics
Fluid dynamics
Mathematical problems
Thin films
title On steady states of van der Waals force driven thin film equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20steady%20states%20of%20van%20der%20Waals%20force%20driven%20thin%20film%20equations&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=JIANG,%20HUIQIANG&rft.date=2007-04-01&rft.volume=18&rft.issue=2&rft.spage=153&rft.epage=180&rft.pages=153-180&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792507006936&rft_dat=%3Cproquest_cross%3E33366820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206387922&rft_id=info:pmid/&rft_cupid=10_1017_S0956792507006936&rfr_iscdi=true