Loading…
On steady states of van der Waals force driven thin film equations
Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation \triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmet...
Saved in:
Published in: | European journal of applied mathematics 2007-04, Vol.18 (2), p.153-180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3 |
container_end_page | 180 |
container_issue | 2 |
container_start_page | 153 |
container_title | European journal of applied mathematics |
container_volume | 18 |
creator | JIANG, HUIQIANG NI, WEI-MING |
description | Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation
\triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega
with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed. |
doi_str_mv | 10.1017/S0956792507006936 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33366820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792507006936</cupid><sourcerecordid>33366820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLfFg7fo_ssme9Riq1gppQW9LZvkraamSbubFPvt3VJRUDzNYX7z5jEInVNyRQlNrmdExTJRLCYJIVJxeYB6VEgVCcHiQ9Tb2dHOP0Yn3i8IoZwkqoduJzX2LZhiG8S04HFj8cbUuACHn42pPLaNywEXrtxAjdu3ssa2rJYY1p1py6b2p-jIBg7OvrSP5sO7-eA-Gk9GD4ObcZQLztsoZ1khrMoKw2WeJ9RkQggrWAGKpxnjNsmFolJlwKlMleU0VSmIDGgBUma8jy73Z1euWXfgW70sfQ5VZWpoOq8551KmjATw4he4aDpXh9c0I5KnYQUWILqHctd478DqlSuXxm01JXq3qP6zaMhE-0wZFvv4Dhj3rmXCk1jL0VRPh0_qZaQe9Szw_KvDLDNXFq_w88n_LZ__g4Y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206387922</pqid></control><display><type>article</type><title>On steady states of van der Waals force driven thin film equations</title><source>Cambridge University Press</source><creator>JIANG, HUIQIANG ; NI, WEI-MING</creator><creatorcontrib>JIANG, HUIQIANG ; NI, WEI-MING</creatorcontrib><description>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation
\triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega
with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792507006936</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Fluid dynamics ; Mathematical problems ; Thin films</subject><ispartof>European journal of applied mathematics, 2007-04, Vol.18 (2), p.153-180</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</citedby><cites>FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792507006936/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>JIANG, HUIQIANG</creatorcontrib><creatorcontrib>NI, WEI-MING</creatorcontrib><title>On steady states of van der Waals force driven thin film equations</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation
\triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega
with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</description><subject>Applied mathematics</subject><subject>Fluid dynamics</subject><subject>Mathematical problems</subject><subject>Thin films</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLfFg7fo_ssme9Riq1gppQW9LZvkraamSbubFPvt3VJRUDzNYX7z5jEInVNyRQlNrmdExTJRLCYJIVJxeYB6VEgVCcHiQ9Tb2dHOP0Yn3i8IoZwkqoduJzX2LZhiG8S04HFj8cbUuACHn42pPLaNywEXrtxAjdu3ssa2rJYY1p1py6b2p-jIBg7OvrSP5sO7-eA-Gk9GD4ObcZQLztsoZ1khrMoKw2WeJ9RkQggrWAGKpxnjNsmFolJlwKlMleU0VSmIDGgBUma8jy73Z1euWXfgW70sfQ5VZWpoOq8551KmjATw4he4aDpXh9c0I5KnYQUWILqHctd478DqlSuXxm01JXq3qP6zaMhE-0wZFvv4Dhj3rmXCk1jL0VRPh0_qZaQe9Szw_KvDLDNXFq_w88n_LZ__g4Y-</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>JIANG, HUIQIANG</creator><creator>NI, WEI-MING</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20070401</creationdate><title>On steady states of van der Waals force driven thin film equations</title><author>JIANG, HUIQIANG ; NI, WEI-MING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied mathematics</topic><topic>Fluid dynamics</topic><topic>Mathematical problems</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, HUIQIANG</creatorcontrib><creatorcontrib>NI, WEI-MING</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, HUIQIANG</au><au>NI, WEI-MING</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On steady states of van der Waals force driven thin film equations</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>18</volume><issue>2</issue><spage>153</spage><epage>180</epage><pages>153-180</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>Let $\Omega\subset\mathbb{R}^{N}$, N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation
\triangle h=\frac{1}{\alpha}h^{-\alpha}-p\quad\text{in}\Omega
with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792507006936</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2007-04, Vol.18 (2), p.153-180 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_proquest_miscellaneous_33366820 |
source | Cambridge University Press |
subjects | Applied mathematics Fluid dynamics Mathematical problems Thin films |
title | On steady states of van der Waals force driven thin film equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20steady%20states%20of%20van%20der%20Waals%20force%20driven%20thin%20film%20equations&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=JIANG,%20HUIQIANG&rft.date=2007-04-01&rft.volume=18&rft.issue=2&rft.spage=153&rft.epage=180&rft.pages=153-180&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792507006936&rft_dat=%3Cproquest_cross%3E33366820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-c2bd4f9bda36cc71ab444f42de938b23f7c49169be31689f31898e4be1de66b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206387922&rft_id=info:pmid/&rft_cupid=10_1017_S0956792507006936&rfr_iscdi=true |