Loading…
On the stabilization of the Timoshenko system by a weak nonlinear dissipation
In this paper we consider the following Timoshenko‐type system: \documentclass{article}\usepackage{amssymb}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document} \[ \left\{\begin{array}{l@{}} \varphi_{tt}-(\varphi_{x}+\psi)_{x}=0,\quad (0,1)\times {\mathbb{R}}_{+}\\ \psi_{tt}-\...
Saved in:
Published in: | Mathematical methods in the applied sciences 2009-03, Vol.32 (4), p.454-469 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider the following Timoshenko‐type system:
\documentclass{article}\usepackage{amssymb}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document} \[ \left\{\begin{array}{l@{}} \varphi_{tt}-(\varphi_{x}+\psi)_{x}=0,\quad (0,1)\times {\mathbb{R}}_{+}\\ \psi_{tt}-\psi_{xx}+\varphi_{x}+\psi +\alpha (t)g(\psi_{t})=0,\quad (0,1)\times {\mathbb{R}}_{+} \end{array} \right. \] \end{document}
Without imposing any restrictive growth assumption on g at the origin, we establish a general decay result depending on g and α. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.1047 |