Loading…

Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes

In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 2007-11, Vol.143 (3), p.703-729
Main Authors: ALÍAS, LUIS J., COLARES, A. GERVASIO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3
cites cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3
container_end_page 729
container_issue 3
container_start_page 703
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 143
creator ALÍAS, LUIS J.
COLARES, A. GERVASIO
description In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.
doi_str_mv 10.1017/S0305004107000576
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33368984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004107000576</cupid><sourcerecordid>33368984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</originalsourceid><addsrcrecordid>eNp1Uc1uEzEQthCVCCkPwM3iwG3Bjr2294gq2iBVghYquFmzu5PEza4dbC9QxIF34A15EpymAgnEZSzNfH_jIeQxZ8844_r5WyZYzZjkTDPGaq3ukRmXqqkMU_I-me3H1X7-gDxM6bpgRMPZjHy78u7jhB5TomFF0w46HNwW6eZmhzFNcVUaiX52eUO74FMGn-nGrTcYaYh9qSOCp90UP0GeIlLn6brIRRjcV-zpZWgx5hT8z-8_3sOwLYRbj-xGTMfkaAVDwkd375xcnb58d7Kszl-fvTp5cV51wtS5gk7UujWd6XiNtQQF2EsNwNteacaxa6WBHpH3CKJd1E1jDCLKBetNAxrFnDw96O5iKMumbEeXyp4DeAxTskIIZRojC_DJX8DrMEVfstnFovyZ1EIXED-AuhhSiriyu-hGiDeWM7s_hv3nGIVTHTguZfzymwBxa1XRrK06u7DmzcXydKk-lDxzIu48YGyj69f4J8n_XX4BflqfSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220004737</pqid></control><display><type>article</type><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><source>Cambridge University Press</source><creator>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</creator><creatorcontrib>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</creatorcontrib><description>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004107000576</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Geometry ; Mathematics</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2007-11, Vol.143 (3), p.703-729</ispartof><rights>Copyright © Cambridge Philosophical Society 2007</rights><rights>Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</citedby><cites>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004107000576/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>ALÍAS, LUIS J.</creatorcontrib><creatorcontrib>COLARES, A. GERVASIO</creatorcontrib><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</description><subject>Geometry</subject><subject>Mathematics</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1uEzEQthCVCCkPwM3iwG3Bjr2294gq2iBVghYquFmzu5PEza4dbC9QxIF34A15EpymAgnEZSzNfH_jIeQxZ8844_r5WyZYzZjkTDPGaq3ukRmXqqkMU_I-me3H1X7-gDxM6bpgRMPZjHy78u7jhB5TomFF0w46HNwW6eZmhzFNcVUaiX52eUO74FMGn-nGrTcYaYh9qSOCp90UP0GeIlLn6brIRRjcV-zpZWgx5hT8z-8_3sOwLYRbj-xGTMfkaAVDwkd375xcnb58d7Kszl-fvTp5cV51wtS5gk7UujWd6XiNtQQF2EsNwNteacaxa6WBHpH3CKJd1E1jDCLKBetNAxrFnDw96O5iKMumbEeXyp4DeAxTskIIZRojC_DJX8DrMEVfstnFovyZ1EIXED-AuhhSiriyu-hGiDeWM7s_hv3nGIVTHTguZfzymwBxa1XRrK06u7DmzcXydKk-lDxzIu48YGyj69f4J8n_XX4BflqfSQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>ALÍAS, LUIS J.</creator><creator>COLARES, A. GERVASIO</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20071101</creationdate><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><author>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALÍAS, LUIS J.</creatorcontrib><creatorcontrib>COLARES, A. GERVASIO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALÍAS, LUIS J.</au><au>COLARES, A. GERVASIO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>143</volume><issue>3</issue><spage>703</spage><epage>729</epage><pages>703-729</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004107000576</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2007-11, Vol.143 (3), p.703-729
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_33368984
source Cambridge University Press
subjects Geometry
Mathematics
title Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20of%20spacelike%20hypersurfaces%20with%20constant%20higher%20order%20mean%20curvature%20in%20generalized%20Robertson%E2%80%93Walker%20spacetimes&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=AL%C3%8DAS,%20LUIS%20J.&rft.date=2007-11-01&rft.volume=143&rft.issue=3&rft.spage=703&rft.epage=729&rft.pages=703-729&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004107000576&rft_dat=%3Cproquest_cross%3E33368984%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=220004737&rft_id=info:pmid/&rft_cupid=10_1017_S0305004107000576&rfr_iscdi=true