Loading…
Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes
In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 2007-11, Vol.143 (3), p.703-729 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3 |
container_end_page | 729 |
container_issue | 3 |
container_start_page | 703 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 143 |
creator | ALÍAS, LUIS J. COLARES, A. GERVASIO |
description | In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces. |
doi_str_mv | 10.1017/S0305004107000576 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33368984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004107000576</cupid><sourcerecordid>33368984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</originalsourceid><addsrcrecordid>eNp1Uc1uEzEQthCVCCkPwM3iwG3Bjr2294gq2iBVghYquFmzu5PEza4dbC9QxIF34A15EpymAgnEZSzNfH_jIeQxZ8844_r5WyZYzZjkTDPGaq3ukRmXqqkMU_I-me3H1X7-gDxM6bpgRMPZjHy78u7jhB5TomFF0w46HNwW6eZmhzFNcVUaiX52eUO74FMGn-nGrTcYaYh9qSOCp90UP0GeIlLn6brIRRjcV-zpZWgx5hT8z-8_3sOwLYRbj-xGTMfkaAVDwkd375xcnb58d7Kszl-fvTp5cV51wtS5gk7UujWd6XiNtQQF2EsNwNteacaxa6WBHpH3CKJd1E1jDCLKBetNAxrFnDw96O5iKMumbEeXyp4DeAxTskIIZRojC_DJX8DrMEVfstnFovyZ1EIXED-AuhhSiriyu-hGiDeWM7s_hv3nGIVTHTguZfzymwBxa1XRrK06u7DmzcXydKk-lDxzIu48YGyj69f4J8n_XX4BflqfSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220004737</pqid></control><display><type>article</type><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><source>Cambridge University Press</source><creator>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</creator><creatorcontrib>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</creatorcontrib><description>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004107000576</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Geometry ; Mathematics</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2007-11, Vol.143 (3), p.703-729</ispartof><rights>Copyright © Cambridge Philosophical Society 2007</rights><rights>Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</citedby><cites>FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004107000576/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>ALÍAS, LUIS J.</creatorcontrib><creatorcontrib>COLARES, A. GERVASIO</creatorcontrib><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</description><subject>Geometry</subject><subject>Mathematics</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1uEzEQthCVCCkPwM3iwG3Bjr2294gq2iBVghYquFmzu5PEza4dbC9QxIF34A15EpymAgnEZSzNfH_jIeQxZ8844_r5WyZYzZjkTDPGaq3ukRmXqqkMU_I-me3H1X7-gDxM6bpgRMPZjHy78u7jhB5TomFF0w46HNwW6eZmhzFNcVUaiX52eUO74FMGn-nGrTcYaYh9qSOCp90UP0GeIlLn6brIRRjcV-zpZWgx5hT8z-8_3sOwLYRbj-xGTMfkaAVDwkd375xcnb58d7Kszl-fvTp5cV51wtS5gk7UujWd6XiNtQQF2EsNwNteacaxa6WBHpH3CKJd1E1jDCLKBetNAxrFnDw96O5iKMumbEeXyp4DeAxTskIIZRojC_DJX8DrMEVfstnFovyZ1EIXED-AuhhSiriyu-hGiDeWM7s_hv3nGIVTHTguZfzymwBxa1XRrK06u7DmzcXydKk-lDxzIu48YGyj69f4J8n_XX4BflqfSQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>ALÍAS, LUIS J.</creator><creator>COLARES, A. GERVASIO</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20071101</creationdate><title>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</title><author>ALÍAS, LUIS J. ; COLARES, A. GERVASIO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALÍAS, LUIS J.</creatorcontrib><creatorcontrib>COLARES, A. GERVASIO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALÍAS, LUIS J.</au><au>COLARES, A. GERVASIO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>143</volume><issue>3</issue><spage>703</spage><epage>729</epage><pages>703-729</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>In this paper we study the problem of uniqueness for spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker (GRW) spacetimes. In particular, we consider the following question: under what conditions must a compact spacelike hypersurface with constant higher order mean curvature in a spatially closed GRW spacetime be a spacelike slice? We prove that this happens, essentially, under the so called null convergence condition. Our approach is based on the use of the Newton transformations (and their associated differential operators) and the Minkowski formulae for spacelike hypersurfaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004107000576</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 2007-11, Vol.143 (3), p.703-729 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_miscellaneous_33368984 |
source | Cambridge University Press |
subjects | Geometry Mathematics |
title | Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20of%20spacelike%20hypersurfaces%20with%20constant%20higher%20order%20mean%20curvature%20in%20generalized%20Robertson%E2%80%93Walker%20spacetimes&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=AL%C3%8DAS,%20LUIS%20J.&rft.date=2007-11-01&rft.volume=143&rft.issue=3&rft.spage=703&rft.epage=729&rft.pages=703-729&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004107000576&rft_dat=%3Cproquest_cross%3E33368984%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-ac357b8c8c15e54a6aed47aa1bd6701ecb48adee1dea3b259988eee420d89a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=220004737&rft_id=info:pmid/&rft_cupid=10_1017_S0305004107000576&rfr_iscdi=true |