Loading…
Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries
The ionic conductivity of the organic electrolyte in Li-ion batteries has been modelled. The classical one-dimensional Nernst–Planck approach results in a system of two non-linear parabolic second-order partial differential equations. It is shown that under electro-neutrality conditions this complex...
Saved in:
Published in: | Electrochimica acta 2008-07, Vol.53 (17), p.5569-5578 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ionic conductivity of the organic electrolyte in Li-ion batteries has been modelled. The classical one-dimensional Nernst–Planck approach results in a system of two non-linear parabolic second-order partial differential equations. It is shown that under electro-neutrality conditions this complex system of equations can be reduced to simple diffusion equations with modified diffusion coefficient, facilitating the efficient use of numerical methods. As a result, detailed information about transient and steady-state behaviour of the electrolyte is revealed, including potential gradients and the diffusion and migration fluxes for both Li
+ and
P
F
6
−
ions. Furthermore, an extension of the basic model is presented, taking into account salt dissociation in the electrolyte. The most characteristics of ionic transportation are illustrated with realistic examples of constant-current (dis)charging Li-ion batteries. Some of the numerical simulations are compared with recently reported experimental results. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2008.02.086 |