Loading…

Preferred extensions as stable models

Given an argumentation framework AF, we introduce a mapping function that constructs a disjunctive logic program P, such that the preferred extensions of AF correspond to the stable models of P, after intersecting each stable model with the relevant atoms. The given mapping function is of polynomial...

Full description

Saved in:
Bibliographic Details
Published in:Theory and practice of logic programming 2008-07, Vol.8 (4), p.527-543
Main Authors: NIEVES, JUAN CARLOS, CORTÉS, ULISES, OSORIO, MAURICIO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given an argumentation framework AF, we introduce a mapping function that constructs a disjunctive logic program P, such that the preferred extensions of AF correspond to the stable models of P, after intersecting each stable model with the relevant atoms. The given mapping function is of polynomial size w.r.t. AF. In particular, we identify that there is a direct relationship between the minimal models of a propositional formula and the preferred extensions of an argumentation framework by working on representing the defeated arguments. Then we show how to infer the preferred extensions of an argumentation framework by using UNSAT algorithms and disjunctive stable model solvers. The relevance of this result is that we define a direct relationship between one of the most satisfactory argumentation semantics and one of the most successful approach of nonmonotonic reasoning i.e., logic programming with the stable model semantics.
ISSN:1471-0684
1475-3081
DOI:10.1017/S1471068408003359