Loading…

Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions

We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approa...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2008-04, Vol.138 (2), p.427-446
Main Authors: Webb, J. R. L., Infante, Gennaro, Franco, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3
cites
container_end_page 446
container_issue 2
container_start_page 427
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 138
creator Webb, J. R. L.
Infante, Gennaro
Franco, Daniel
description We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.
doi_str_mv 10.1017/S0308210506001041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33437078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210506001041</cupid><sourcerecordid>2075359001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</originalsourceid><addsrcrecordid>eNp1kUFPFTEQxxuDiU_0A3hrPHArzrS7bfdoCD5MSJSg4dh0t10p9LXQ7gJ-e_f5EBMNp6aZ32_mPxlC3iEcIqD6cA4CNEdoQQIgNPiCrLBRginkzR5ZbctsW39FXtd6BQBSt2pFbr_mGqZw52nNcZ5CTpXmkaacYkjeFjrmuUyXLBfnC-3znJwtP9mdjbOnNyX30W8qvQ_TJY15sJHa5LY22_3-CHTIyYXf7d-Ql6ON1b99fPfJ90_H345O2OmX9eejj6dsELqdWMed7NAqjp1seN82IzjUQireC-2dlhzRoh3VaK10o1McfN9w1KoHxYdB7JODXd8l5e3s62Q2oQ4-Rpt8nqsRohEKlF7A9_-AV8vOaclmJHAtAXW7QLiDhpJrLX40NyVsls0MgtlewPx3gcVhOyfUyT88CbZcG6mEao1cn5nu4uyku1ivzfnCi8cZdtOX4H74v0men_ILDV2YUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>602860185</pqid></control><display><type>article</type><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><source>Cambridge University Press</source><creator>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</creator><creatorcontrib>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</creatorcontrib><description>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210506001041</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Boundary value problems ; Nonlinear equations</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.427-446</ispartof><rights>2008 Royal Society of Edinburgh</rights><rights>Copyright Cambridge University Press Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210506001041/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Webb, J. R. L.</creatorcontrib><creatorcontrib>Infante, Gennaro</creatorcontrib><creatorcontrib>Franco, Daniel</creatorcontrib><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</description><subject>Boundary value problems</subject><subject>Nonlinear equations</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kUFPFTEQxxuDiU_0A3hrPHArzrS7bfdoCD5MSJSg4dh0t10p9LXQ7gJ-e_f5EBMNp6aZ32_mPxlC3iEcIqD6cA4CNEdoQQIgNPiCrLBRginkzR5ZbctsW39FXtd6BQBSt2pFbr_mGqZw52nNcZ5CTpXmkaacYkjeFjrmuUyXLBfnC-3znJwtP9mdjbOnNyX30W8qvQ_TJY15sJHa5LY22_3-CHTIyYXf7d-Ql6ON1b99fPfJ90_H345O2OmX9eejj6dsELqdWMed7NAqjp1seN82IzjUQireC-2dlhzRoh3VaK10o1McfN9w1KoHxYdB7JODXd8l5e3s62Q2oQ4-Rpt8nqsRohEKlF7A9_-AV8vOaclmJHAtAXW7QLiDhpJrLX40NyVsls0MgtlewPx3gcVhOyfUyT88CbZcG6mEao1cn5nu4uyku1ivzfnCi8cZdtOX4H74v0men_ILDV2YUQ</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Webb, J. R. L.</creator><creator>Infante, Gennaro</creator><creator>Franco, Daniel</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200804</creationdate><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><author>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boundary value problems</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, J. R. L.</creatorcontrib><creatorcontrib>Infante, Gennaro</creatorcontrib><creatorcontrib>Franco, Daniel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, J. R. L.</au><au>Infante, Gennaro</au><au>Franco, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2008-04</date><risdate>2008</risdate><volume>138</volume><issue>2</issue><spage>427</spage><epage>446</epage><pages>427-446</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210506001041</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.427-446
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_miscellaneous_33437078
source Cambridge University Press
subjects Boundary value problems
Nonlinear equations
title Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20of%20nonlinear%20fourth-order%20boundary-value%20problems%20with%20local%20and%20non-local%20boundary%20conditions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Webb,%20J.%20R.%20L.&rft.date=2008-04&rft.volume=138&rft.issue=2&rft.spage=427&rft.epage=446&rft.pages=427-446&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210506001041&rft_dat=%3Cproquest_cross%3E2075359001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=602860185&rft_id=info:pmid/&rft_cupid=10_1017_S0308210506001041&rfr_iscdi=true