Loading…
Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions
We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approa...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2008-04, Vol.138 (2), p.427-446 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3 |
---|---|
cites | |
container_end_page | 446 |
container_issue | 2 |
container_start_page | 427 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 138 |
creator | Webb, J. R. L. Infante, Gennaro Franco, Daniel |
description | We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs. |
doi_str_mv | 10.1017/S0308210506001041 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33437078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210506001041</cupid><sourcerecordid>2075359001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</originalsourceid><addsrcrecordid>eNp1kUFPFTEQxxuDiU_0A3hrPHArzrS7bfdoCD5MSJSg4dh0t10p9LXQ7gJ-e_f5EBMNp6aZ32_mPxlC3iEcIqD6cA4CNEdoQQIgNPiCrLBRginkzR5ZbctsW39FXtd6BQBSt2pFbr_mGqZw52nNcZ5CTpXmkaacYkjeFjrmuUyXLBfnC-3znJwtP9mdjbOnNyX30W8qvQ_TJY15sJHa5LY22_3-CHTIyYXf7d-Ql6ON1b99fPfJ90_H345O2OmX9eejj6dsELqdWMed7NAqjp1seN82IzjUQireC-2dlhzRoh3VaK10o1McfN9w1KoHxYdB7JODXd8l5e3s62Q2oQ4-Rpt8nqsRohEKlF7A9_-AV8vOaclmJHAtAXW7QLiDhpJrLX40NyVsls0MgtlewPx3gcVhOyfUyT88CbZcG6mEao1cn5nu4uyku1ivzfnCi8cZdtOX4H74v0men_ILDV2YUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>602860185</pqid></control><display><type>article</type><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><source>Cambridge University Press</source><creator>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</creator><creatorcontrib>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</creatorcontrib><description>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210506001041</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Boundary value problems ; Nonlinear equations</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.427-446</ispartof><rights>2008 Royal Society of Edinburgh</rights><rights>Copyright Cambridge University Press Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210506001041/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Webb, J. R. L.</creatorcontrib><creatorcontrib>Infante, Gennaro</creatorcontrib><creatorcontrib>Franco, Daniel</creatorcontrib><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</description><subject>Boundary value problems</subject><subject>Nonlinear equations</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kUFPFTEQxxuDiU_0A3hrPHArzrS7bfdoCD5MSJSg4dh0t10p9LXQ7gJ-e_f5EBMNp6aZ32_mPxlC3iEcIqD6cA4CNEdoQQIgNPiCrLBRginkzR5ZbctsW39FXtd6BQBSt2pFbr_mGqZw52nNcZ5CTpXmkaacYkjeFjrmuUyXLBfnC-3znJwtP9mdjbOnNyX30W8qvQ_TJY15sJHa5LY22_3-CHTIyYXf7d-Ql6ON1b99fPfJ90_H345O2OmX9eejj6dsELqdWMed7NAqjp1seN82IzjUQireC-2dlhzRoh3VaK10o1McfN9w1KoHxYdB7JODXd8l5e3s62Q2oQ4-Rpt8nqsRohEKlF7A9_-AV8vOaclmJHAtAXW7QLiDhpJrLX40NyVsls0MgtlewPx3gcVhOyfUyT88CbZcG6mEao1cn5nu4uyku1ivzfnCi8cZdtOX4H74v0men_ILDV2YUQ</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Webb, J. R. L.</creator><creator>Infante, Gennaro</creator><creator>Franco, Daniel</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200804</creationdate><title>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</title><author>Webb, J. R. L. ; Infante, Gennaro ; Franco, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boundary value problems</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, J. R. L.</creatorcontrib><creatorcontrib>Infante, Gennaro</creatorcontrib><creatorcontrib>Franco, Daniel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, J. R. L.</au><au>Infante, Gennaro</au><au>Franco, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2008-04</date><risdate>2008</risdate><volume>138</volume><issue>2</issue><spage>427</spage><epage>446</epage><pages>427-446</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space $C[0,1]$, involving a linear functional $\alpha[u]$ but, although we seek positive solutions, the functional is not assumed to be positive for all positive $u$. The results are new even for the classic boundary conditions of clamped or hinged ends when $\alpha[u]=0$, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210506001041</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2008-04, Vol.138 (2), p.427-446 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_miscellaneous_33437078 |
source | Cambridge University Press |
subjects | Boundary value problems Nonlinear equations |
title | Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20of%20nonlinear%20fourth-order%20boundary-value%20problems%20with%20local%20and%20non-local%20boundary%20conditions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Webb,%20J.%20R.%20L.&rft.date=2008-04&rft.volume=138&rft.issue=2&rft.spage=427&rft.epage=446&rft.pages=427-446&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210506001041&rft_dat=%3Cproquest_cross%3E2075359001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-92d691a7219642b54f0d183672b38ed86211a1af7faa6dfd720eb42187b072cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=602860185&rft_id=info:pmid/&rft_cupid=10_1017_S0308210506001041&rfr_iscdi=true |