Loading…

Optimization of friction welding parameters using evolutionary computational techniques

The purpose of this study is to propose a method to decide near optimal settings of the welding process parameters in friction welding of stainless steel (AISI 304) by using non conventional techniques and artificial neural network (ANN). The methods suggested in this study were used to determine th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2009-03, Vol.209 (5), p.2576-2584
Main Authors: Sathiya, P., Aravindan, S., Haq, A. Noorul, Paneerselvam, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3
cites cdi_FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3
container_end_page 2584
container_issue 5
container_start_page 2576
container_title Journal of materials processing technology
container_volume 209
creator Sathiya, P.
Aravindan, S.
Haq, A. Noorul
Paneerselvam, K.
description The purpose of this study is to propose a method to decide near optimal settings of the welding process parameters in friction welding of stainless steel (AISI 304) by using non conventional techniques and artificial neural network (ANN). The methods suggested in this study were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding. This study describes how to obtain near optimal welding conditions over a wide search space by conducting relatively a smaller number of experiments. The optimized values obtained through these evolutionary computational techniques were compared with experimental results. The strength and microstructural aspects of the processed joints were also analyzed to validate the optimization.
doi_str_mv 10.1016/j.jmatprotec.2008.06.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33457580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013608005025</els_id><sourcerecordid>33457580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhH0AiVL4Dzlxa1jbeThHqHhJlXoBcbRcZw2OkjjYThH8epIWiSOnXa1mZjUfIQmFlAItrpu06VQcvIuoUwYgUihS4HBCFlCxbAWUF2fkPIQGgJYgxIK8bodoO_utonV94kxivNWH_RPb2vZvyaC86jCiD8kY5gPuXTvOEuW_Eu26YYwHt2qT6e97bz9GDBfk1Kg24OXvXJKX-7vn9eNqs314Wt9sVjqjeVwpjoCMMcFpvqvYDkwOwtSl4JxVTGiTMdBFpSnkWqvM5IwrTjNRIJZCUMOX5OqYO7We_0bZ2aCxbVWPbgyS8ywvcwGTUByF2rsQPBo5eNtNFSQFOdOTjfyjJ2d6Ego50Zust0crTkX2Fr0M2mKvsbYedZS1s_-H_ABCJ4JR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33457580</pqid></control><display><type>article</type><title>Optimization of friction welding parameters using evolutionary computational techniques</title><source>Elsevier</source><creator>Sathiya, P. ; Aravindan, S. ; Haq, A. Noorul ; Paneerselvam, K.</creator><creatorcontrib>Sathiya, P. ; Aravindan, S. ; Haq, A. Noorul ; Paneerselvam, K.</creatorcontrib><description>The purpose of this study is to propose a method to decide near optimal settings of the welding process parameters in friction welding of stainless steel (AISI 304) by using non conventional techniques and artificial neural network (ANN). The methods suggested in this study were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding. This study describes how to obtain near optimal welding conditions over a wide search space by conducting relatively a smaller number of experiments. The optimized values obtained through these evolutionary computational techniques were compared with experimental results. The strength and microstructural aspects of the processed joints were also analyzed to validate the optimization.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2008.06.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural network (ANN) ; Genetic algorithm (GA) ; Metal loss ; Particle swarm optimization (PSO) ; Simulated annealing (SA) ; Tensile strength</subject><ispartof>Journal of materials processing technology, 2009-03, Vol.209 (5), p.2576-2584</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3</citedby><cites>FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sathiya, P.</creatorcontrib><creatorcontrib>Aravindan, S.</creatorcontrib><creatorcontrib>Haq, A. Noorul</creatorcontrib><creatorcontrib>Paneerselvam, K.</creatorcontrib><title>Optimization of friction welding parameters using evolutionary computational techniques</title><title>Journal of materials processing technology</title><description>The purpose of this study is to propose a method to decide near optimal settings of the welding process parameters in friction welding of stainless steel (AISI 304) by using non conventional techniques and artificial neural network (ANN). The methods suggested in this study were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding. This study describes how to obtain near optimal welding conditions over a wide search space by conducting relatively a smaller number of experiments. The optimized values obtained through these evolutionary computational techniques were compared with experimental results. The strength and microstructural aspects of the processed joints were also analyzed to validate the optimization.</description><subject>Artificial neural network (ANN)</subject><subject>Genetic algorithm (GA)</subject><subject>Metal loss</subject><subject>Particle swarm optimization (PSO)</subject><subject>Simulated annealing (SA)</subject><subject>Tensile strength</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhH0AiVL4Dzlxa1jbeThHqHhJlXoBcbRcZw2OkjjYThH8epIWiSOnXa1mZjUfIQmFlAItrpu06VQcvIuoUwYgUihS4HBCFlCxbAWUF2fkPIQGgJYgxIK8bodoO_utonV94kxivNWH_RPb2vZvyaC86jCiD8kY5gPuXTvOEuW_Eu26YYwHt2qT6e97bz9GDBfk1Kg24OXvXJKX-7vn9eNqs314Wt9sVjqjeVwpjoCMMcFpvqvYDkwOwtSl4JxVTGiTMdBFpSnkWqvM5IwrTjNRIJZCUMOX5OqYO7We_0bZ2aCxbVWPbgyS8ywvcwGTUByF2rsQPBo5eNtNFSQFOdOTjfyjJ2d6Ego50Zust0crTkX2Fr0M2mKvsbYedZS1s_-H_ABCJ4JR</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sathiya, P.</creator><creator>Aravindan, S.</creator><creator>Haq, A. Noorul</creator><creator>Paneerselvam, K.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090301</creationdate><title>Optimization of friction welding parameters using evolutionary computational techniques</title><author>Sathiya, P. ; Aravindan, S. ; Haq, A. Noorul ; Paneerselvam, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural network (ANN)</topic><topic>Genetic algorithm (GA)</topic><topic>Metal loss</topic><topic>Particle swarm optimization (PSO)</topic><topic>Simulated annealing (SA)</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathiya, P.</creatorcontrib><creatorcontrib>Aravindan, S.</creatorcontrib><creatorcontrib>Haq, A. Noorul</creatorcontrib><creatorcontrib>Paneerselvam, K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathiya, P.</au><au>Aravindan, S.</au><au>Haq, A. Noorul</au><au>Paneerselvam, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of friction welding parameters using evolutionary computational techniques</atitle><jtitle>Journal of materials processing technology</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>209</volume><issue>5</issue><spage>2576</spage><epage>2584</epage><pages>2576-2584</pages><issn>0924-0136</issn><abstract>The purpose of this study is to propose a method to decide near optimal settings of the welding process parameters in friction welding of stainless steel (AISI 304) by using non conventional techniques and artificial neural network (ANN). The methods suggested in this study were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding. This study describes how to obtain near optimal welding conditions over a wide search space by conducting relatively a smaller number of experiments. The optimized values obtained through these evolutionary computational techniques were compared with experimental results. The strength and microstructural aspects of the processed joints were also analyzed to validate the optimization.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2008.06.030</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2009-03, Vol.209 (5), p.2576-2584
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_33457580
source Elsevier
subjects Artificial neural network (ANN)
Genetic algorithm (GA)
Metal loss
Particle swarm optimization (PSO)
Simulated annealing (SA)
Tensile strength
title Optimization of friction welding parameters using evolutionary computational techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20friction%20welding%20parameters%20using%20evolutionary%20computational%20techniques&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Sathiya,%20P.&rft.date=2009-03-01&rft.volume=209&rft.issue=5&rft.spage=2576&rft.epage=2584&rft.pages=2576-2584&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2008.06.030&rft_dat=%3Cproquest_cross%3E33457580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-a3e0e2228315b92b0f508fd78332928cf420c69c105cca4f523a31486ee7881f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33457580&rft_id=info:pmid/&rfr_iscdi=true