Loading…
Relative Buoyancy Dominates Thermal-Like Flow Interaction along an Incline
This paper describes laboratory investigations of the motion between two fixed volumes of dense fluid (surge-type gravity currents) with different salt concentrations that interact above an incline in the presence of ambient stratification. The experiments include both large and small density contra...
Saved in:
Published in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2008-05, Vol.134 (5), p.636-643 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes laboratory investigations of the motion between two fixed volumes of dense fluid (surge-type gravity currents) with different salt concentrations that interact above an incline in the presence of ambient stratification. The experiments include both large and small density contrasts between the interacting surges. Initially, the propagation of each fluid mass assumes a thermal-like nature, but then the lower density surge is quickly caught up by the denser fluid flow because of its higher velocity. There are two key process regarding the surge interaction. With a large density contrasting the fluid volumes, the denser flow moves to the front of the current as an intrusion with no mixing. With a small density difference, pronounced mixing occurs between the surges with the development of a homogeneous underflow. A simple energy parameterization is developed to evaluate the source conditions under which the different flow dynamics develop. |
---|---|
ISSN: | 0733-9429 1943-7900 |
DOI: | 10.1061/(ASCE)0733-9429(2008)134:5(636) |