Loading…

Structure and properties of new reversibly crosslinked iPP/LDPE blends

Reversibly crosslinked blends of isotactic polypropylene and low density polyethylene (iPP/LDPE) were prepared in the presence of crosslinking agents using reactive extrusion. The structure and properties of the modified blends were investigated by means of wide-angle X-ray scattering (WAXS), differ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2008-07, Vol.109 (2), p.795-804
Main Authors: Bouhelal, S, Cagiao, M.E, Khellaf, S, Benachour, D, Baltá Calleja, F.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reversibly crosslinked blends of isotactic polypropylene and low density polyethylene (iPP/LDPE) were prepared in the presence of crosslinking agents using reactive extrusion. The structure and properties of the modified blends were investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and macro- and micro-mechanical measurements. The crystallinity of the modified samples (LDPE, iPP, and their blends) does not seem to be so much affected by the crosslinking process. Results show that the microhardness of the iPP/LDPE blends notably increases with the iPP content. The micromechanical properties of the modified blends only improve slightly as a consequence of the crosslinking process. In the iPP samples, and also in the iPP/LDPE blends, this process gives rise to the appearance of new, crystalline ethylenic chains, as evidenced by the calorimetric measurements. Furthermore, the impact strength of the modified materials is improved as compared with that of the original ones, while some of the crosslinked blends show a ductile fracture behavior.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.28194