Loading…

Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)

Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermophysics 2008-04, Vol.29 (2), p.586-609
Main Authors: Smiljanic, Jelena D, Kijevcanin, Mirjana Lj, Djordjevic, Bojan D, Grozdanic, Dusan K, Serbanovic, Slobodan P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E ) were calculated and fitted to the Redlich–Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu–Coon–Bluck–Tilton (TCBT) mixing rules coupled with the Peng–Robinson–Stryjek–Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
ISSN:0195-928X
1572-9567
DOI:10.1007/s10765-008-0390-4