Loading…

Calculation of K-factor and T-stress for cracks in anisotropic bimaterials

The problem of a crack in a thin layer terminating perpendicular to a layer/substrate interface is analyzed for a general case of elastic anisotropy. The crack is modelled by means of continuous distribution of dislocations, which is assumed to be singular at the crack tip. A system of simultaneous...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2008-08, Vol.75 (12), p.3707-3726
Main Authors: Profant, T., Ševeček, O., Kotoul, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of a crack in a thin layer terminating perpendicular to a layer/substrate interface is analyzed for a general case of elastic anisotropy. The crack is modelled by means of continuous distribution of dislocations, which is assumed to be singular at the crack tip. A system of simultaneous functional equations is obtained that enables to find the singularity exponent λ. The reciprocal theorem ( ψ-integral) is used to compute the generalized stress intensity factor (GSIF) through the remote stress and displacement field for a particular specimen geometry and boundary conditions using FEM. The results obtained are compared with the evaluation of GSIF based upon the dislocation arrays technique. Existing semi-analytical solution for singularities in anisotropic trimaterials is applied and its validity for the specimen investigated is checked by FEM. The evaluation of T-stress using the dislocation arrays technique is performed.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2007.08.003