Loading…

Lifetime evaluation of two different hot work tool steels in aluminium extrusion

During aluminium extrusion, the die experience cyclic thermo-mechanical loads that can lead to materials degradation and failure. For a process optimization and a comparison of different hot work tool steels, the finite element method is an appropriate means. Local inelastic strains result from the...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2008-07, Vol.43 (1), p.82-91
Main Authors: Sommitsch, C., Sievert, R., Wlanis, T., Redl, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During aluminium extrusion, the die experience cyclic thermo-mechanical loads that can lead to materials degradation and failure. For a process optimization and a comparison of different hot work tool steels, the finite element method is an appropriate means. Local inelastic strains result from the interaction of the applied temperature and stress loading and can be computed by suitable inelastic constitutive equations. Stress amplitudes and dwell times during extrusion result in creep-fatigue damage. A lifetime consumption model sums increments of a damage variable over time and defines materials failure as the accumulation of the resulting damage variable to a critical value. The procedure for the identification of the material parameters for both the constitutive and the damage model is described in detail, including the material parameters for the description of time-effects, and applied to the hot work tool steel Böhler W300 ISOBLOC (EN 1.2343). The lifetime consumption for two different hot work tool steels is compared on the basis of an example in aluminium extrusion.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2007.07.054