Loading…

Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy

Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were comput...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fatigue 2009-04, Vol.31 (4), p.651-658
Main Authors: Wang, L., Daniewicz, S.R., Horstemeyer, M.F., Sintay, S., Rollett, A.D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83
cites
container_end_page 658
container_issue 4
container_start_page 651
container_title International journal of fatigue
container_volume 31
creator Wang, L.
Daniewicz, S.R.
Horstemeyer, M.F.
Sintay, S.
Rollett, A.D.
description Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were computed, and from these results the crack propagation life N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.
doi_str_mv 10.1016/j.ijfatigue.2008.03.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33562391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112308000819</els_id><sourcerecordid>33562391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEEkvhGfAFbgn-kzjOcVVBQarUS3u2HHu8ncVJFtsB5Xl4UbzaVa-cZjT6zTff6Kuqj4w2jDL55djg0ZuMhxUaTqlqqGgo719VO6b6oRZtx19XO8paXjPGxdvqXUpHSulA-25X_X18jgC1wwnmhMtsAvE4YwYCAcosE1NmW8JE1oTzgdi4pVyoUzApo8W8Eb9EYsjJRDNBhkhSXt1GFk8mtHFJOa42r9GEsJE0lUKudouWsT_JIS5_8jPBuYjs932xRUxYJ5zXqTRh2d5Xb7wJCT5c60319O3r4-33-v7h7sft_r62bctzzcbBSWVZ51vZOQmGSdEKaK1Xg5SuA6U4G8ELxQwVUknmxnEUfHDWjcIpcVN9vuie4vJrhZT1hMlCCGaGZU1aiE5yMbAC9hfw_F6K4PUp4mTiphnV51D0Ub-Eos-haCp0CaVsfrqeMMma4KOZLaaXdV4CartOFG5_4aD8-xsh6mQRZgsOI9is3YL_vfUPQHmrTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33562391</pqid></control><display><type>article</type><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</creator><creatorcontrib>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</creatorcontrib><description>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were computed, and from these results the crack propagation life N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2008.03.027</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crystal plasticity ; Design of experiments ; Exact sciences and technology ; Fatigue ; Finite element analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructurally small fatigue crack growth</subject><ispartof>International journal of fatigue, 2009-04, Vol.31 (4), p.651-658</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21234553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Horstemeyer, M.F.</creatorcontrib><creatorcontrib>Sintay, S.</creatorcontrib><creatorcontrib>Rollett, A.D.</creatorcontrib><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><title>International journal of fatigue</title><description>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were computed, and from these results the crack propagation life N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</description><subject>Applied sciences</subject><subject>Crystal plasticity</subject><subject>Design of experiments</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Finite element analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructurally small fatigue crack growth</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxiMEEkvhGfAFbgn-kzjOcVVBQarUS3u2HHu8ncVJFtsB5Xl4UbzaVa-cZjT6zTff6Kuqj4w2jDL55djg0ZuMhxUaTqlqqGgo719VO6b6oRZtx19XO8paXjPGxdvqXUpHSulA-25X_X18jgC1wwnmhMtsAvE4YwYCAcosE1NmW8JE1oTzgdi4pVyoUzApo8W8Eb9EYsjJRDNBhkhSXt1GFk8mtHFJOa42r9GEsJE0lUKudouWsT_JIS5_8jPBuYjs932xRUxYJ5zXqTRh2d5Xb7wJCT5c60319O3r4-33-v7h7sft_r62bctzzcbBSWVZ51vZOQmGSdEKaK1Xg5SuA6U4G8ELxQwVUknmxnEUfHDWjcIpcVN9vuie4vJrhZT1hMlCCGaGZU1aiE5yMbAC9hfw_F6K4PUp4mTiphnV51D0Ub-Eos-haCp0CaVsfrqeMMma4KOZLaaXdV4CartOFG5_4aD8-xsh6mQRZgsOI9is3YL_vfUPQHmrTg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Wang, L.</creator><creator>Daniewicz, S.R.</creator><creator>Horstemeyer, M.F.</creator><creator>Sintay, S.</creator><creator>Rollett, A.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><author>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Crystal plasticity</topic><topic>Design of experiments</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Finite element analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructurally small fatigue crack growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Horstemeyer, M.F.</creatorcontrib><creatorcontrib>Sintay, S.</creatorcontrib><creatorcontrib>Rollett, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.</au><au>Daniewicz, S.R.</au><au>Horstemeyer, M.F.</au><au>Sintay, S.</au><au>Rollett, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</atitle><jtitle>International journal of fatigue</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>651</spage><epage>658</epage><pages>651-658</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were computed, and from these results the crack propagation life N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2008.03.027</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2009-04, Vol.31 (4), p.651-658
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_33562391
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Crystal plasticity
Design of experiments
Exact sciences and technology
Fatigue
Finite element analysis
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructurally small fatigue crack growth
title Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20finite%20element%20analysis%20using%20crystal%20plasticity%20for%20a%20parameter%20study%20of%20microstructurally%20small%20fatigue%20crack%20growth%20in%20a%20AA7075%20aluminum%20alloy&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Wang,%20L.&rft.date=2009-04-01&rft.volume=31&rft.issue=4&rft.spage=651&rft.epage=658&rft.pages=651-658&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2008.03.027&rft_dat=%3Cproquest_cross%3E33562391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33562391&rft_id=info:pmid/&rfr_iscdi=true