Loading…
Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy
Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses ( S o/ S max) were comput...
Saved in:
Published in: | International journal of fatigue 2009-04, Vol.31 (4), p.651-658 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83 |
---|---|
cites | |
container_end_page | 658 |
container_issue | 4 |
container_start_page | 651 |
container_title | International journal of fatigue |
container_volume | 31 |
creator | Wang, L. Daniewicz, S.R. Horstemeyer, M.F. Sintay, S. Rollett, A.D. |
description | Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses (
S
o/
S
max) were computed, and from these results the crack propagation life
N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth. |
doi_str_mv | 10.1016/j.ijfatigue.2008.03.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33562391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112308000819</els_id><sourcerecordid>33562391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEEkvhGfAFbgn-kzjOcVVBQarUS3u2HHu8ncVJFtsB5Xl4UbzaVa-cZjT6zTff6Kuqj4w2jDL55djg0ZuMhxUaTqlqqGgo719VO6b6oRZtx19XO8paXjPGxdvqXUpHSulA-25X_X18jgC1wwnmhMtsAvE4YwYCAcosE1NmW8JE1oTzgdi4pVyoUzApo8W8Eb9EYsjJRDNBhkhSXt1GFk8mtHFJOa42r9GEsJE0lUKudouWsT_JIS5_8jPBuYjs932xRUxYJ5zXqTRh2d5Xb7wJCT5c60319O3r4-33-v7h7sft_r62bctzzcbBSWVZ51vZOQmGSdEKaK1Xg5SuA6U4G8ELxQwVUknmxnEUfHDWjcIpcVN9vuie4vJrhZT1hMlCCGaGZU1aiE5yMbAC9hfw_F6K4PUp4mTiphnV51D0Ub-Eos-haCp0CaVsfrqeMMma4KOZLaaXdV4CartOFG5_4aD8-xsh6mQRZgsOI9is3YL_vfUPQHmrTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33562391</pqid></control><display><type>article</type><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</creator><creatorcontrib>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</creatorcontrib><description>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses (
S
o/
S
max) were computed, and from these results the crack propagation life
N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2008.03.027</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crystal plasticity ; Design of experiments ; Exact sciences and technology ; Fatigue ; Finite element analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructurally small fatigue crack growth</subject><ispartof>International journal of fatigue, 2009-04, Vol.31 (4), p.651-658</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21234553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Horstemeyer, M.F.</creatorcontrib><creatorcontrib>Sintay, S.</creatorcontrib><creatorcontrib>Rollett, A.D.</creatorcontrib><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><title>International journal of fatigue</title><description>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses (
S
o/
S
max) were computed, and from these results the crack propagation life
N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</description><subject>Applied sciences</subject><subject>Crystal plasticity</subject><subject>Design of experiments</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Finite element analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructurally small fatigue crack growth</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxiMEEkvhGfAFbgn-kzjOcVVBQarUS3u2HHu8ncVJFtsB5Xl4UbzaVa-cZjT6zTff6Kuqj4w2jDL55djg0ZuMhxUaTqlqqGgo719VO6b6oRZtx19XO8paXjPGxdvqXUpHSulA-25X_X18jgC1wwnmhMtsAvE4YwYCAcosE1NmW8JE1oTzgdi4pVyoUzApo8W8Eb9EYsjJRDNBhkhSXt1GFk8mtHFJOa42r9GEsJE0lUKudouWsT_JIS5_8jPBuYjs932xRUxYJ5zXqTRh2d5Xb7wJCT5c60319O3r4-33-v7h7sft_r62bctzzcbBSWVZ51vZOQmGSdEKaK1Xg5SuA6U4G8ELxQwVUknmxnEUfHDWjcIpcVN9vuie4vJrhZT1hMlCCGaGZU1aiE5yMbAC9hfw_F6K4PUp4mTiphnV51D0Ub-Eos-haCp0CaVsfrqeMMma4KOZLaaXdV4CartOFG5_4aD8-xsh6mQRZgsOI9is3YL_vfUPQHmrTg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Wang, L.</creator><creator>Daniewicz, S.R.</creator><creator>Horstemeyer, M.F.</creator><creator>Sintay, S.</creator><creator>Rollett, A.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</title><author>Wang, L. ; Daniewicz, S.R. ; Horstemeyer, M.F. ; Sintay, S. ; Rollett, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Crystal plasticity</topic><topic>Design of experiments</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Finite element analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructurally small fatigue crack growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Horstemeyer, M.F.</creatorcontrib><creatorcontrib>Sintay, S.</creatorcontrib><creatorcontrib>Rollett, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.</au><au>Daniewicz, S.R.</au><au>Horstemeyer, M.F.</au><au>Sintay, S.</au><au>Rollett, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy</atitle><jtitle>International journal of fatigue</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>651</spage><epage>658</epage><pages>651-658</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>Three-dimensional finite element analysis using a crystal plasticity constitutive theory was performed to understand and quantify various parametric effects on microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Plasticity-induced crack opening stresses (
S
o/
S
max) were computed, and from these results the crack propagation life
N was obtained. A design of experiments (DOE) technique was used to study the influences of seven parameters (maximum load, load ratio, particle modulus, the number of initially active slip systems, misorientation angle, particle aspect ratio, and the normalized particle size) on fatigue crack growth. The simulations clearly showed that the load ratio is the most influential parameter on crack growth. The next most influential parameters are maximum load and the number of initially active slip systems. The particle modulus, misorientation angle, particle aspect ratio, and the normalized particle size showed less influence on crack growth. Another important discovery in this study revealed that the particles were more important than the grain boundaries for inducing resistance for microstructurally small fatigue crack growth.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2008.03.027</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2009-04, Vol.31 (4), p.651-658 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_miscellaneous_33562391 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Crystal plasticity Design of experiments Exact sciences and technology Fatigue Finite element analysis Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microstructurally small fatigue crack growth |
title | Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20finite%20element%20analysis%20using%20crystal%20plasticity%20for%20a%20parameter%20study%20of%20microstructurally%20small%20fatigue%20crack%20growth%20in%20a%20AA7075%20aluminum%20alloy&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Wang,%20L.&rft.date=2009-04-01&rft.volume=31&rft.issue=4&rft.spage=651&rft.epage=658&rft.pages=651-658&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2008.03.027&rft_dat=%3Cproquest_cross%3E33562391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-1b9d68c15f465d6ea16343e4cf8966d5e8821bef381a036861dbbb329dcdb3d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33562391&rft_id=info:pmid/&rfr_iscdi=true |