Loading…
Receptivity of a hypersonic boundary layer over a flat plate with a porous coating
Two-dimensional direct numerical simulation (DNS) of receptivity to acoustic disturbances radiating onto a flat plate with a sharp leading edge in the Mach 6 free stream is carried out. Numerical data obtained for fast and slow acoustic waves of zero angle of incidence are consistent with the asympt...
Saved in:
Published in: | Journal of fluid mechanics 2008-04, Vol.601, p.165-187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional direct numerical simulation (DNS) of receptivity to acoustic disturbances radiating onto a flat plate with a sharp leading edge in the Mach 6 free stream is carried out. Numerical data obtained for fast and slow acoustic waves of zero angle of incidence are consistent with the asymptotic theory. Numerical experiments with acoustic waves of non-zero angles of incidence reveal new features of the disturbance field near the plate leading edge. The shock wave, which is formed near the leading edge owing to viscous–inviscid interaction, produces a profound effect on the acoustic near field and excitation of boundary-layer modes. DNS of the porous coating effect on stability and receptivity of the hypersonic boundary layer is carried out. A porous coating of regular porosity (equally spaced cylindrical blind micro-holes) effectively diminishes the second-mode growth rate in accordance with the predictions of linear stability theory, while weakly affecting acoustic waves. The coating end effects, associated with junctures between solid and porous surfaces, are investigated. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112008000669 |