Loading…

Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes

Three-dimensional two-fluid model and population balance equation is presented to treat the complex hydrodynamics and thermomechanical processes under various bubbly flow conditions. The class method, realized by the MUSIG model, alongside with suitable bubble coalescence and bubble breakage kernels...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2008-07, Vol.54 (7), p.1689-1710
Main Authors: Cheung, Sherman C.P, Yeoh, G.H, Tu, J.Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional two-fluid model and population balance equation is presented to treat the complex hydrodynamics and thermomechanical processes under various bubbly flow conditions. The class method, realized by the MUSIG model, alongside with suitable bubble coalescence and bubble breakage kernels is adopted. Homogeneous MUSIG model predictions have shown to yield good agreement against isothermal bubbly flow measurements. Subcooled boiling flow is further modeled through the use of class method with an improved wall heat partition model. Against experimental data, numerical results also showed good agreement for the local Sauter mean bubble diameter, void fraction, and interfacial area concentration profiles. Inhomogeneous MUSIG model is applied to investigate transition bubbly-to-slug flow. Better prediction of bubble diameter is accomplished, especially capturing separation of small and large bubbles. Weakness exists nonetheless in the interfacial forces model. Work is in progress through the consideration of swarm and cluster bubbles instead of isolated spherical bubble calibration. © 2008 American Institute of Chemical Engineers AIChE J, 2008
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.11503