Loading…

Synthesis and optical properties of ZnO/MgO nanocomposite

ZnO and its ternary alloy ZnMgO offer an excellent material system with potential in applications related to quantum well and photonic devices in UV and visible. ZnO and ZnO/MgO composite were prepared by solid-state mixing and sintering at high temperature in reducing atmosphere. ZnO/MgO nanocompos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2008-07, Vol.459 (1-2), p.457-460
Main Authors: CHAWLA, Santa, JAYANTHI, K, CHANDER, Harish, HARANATH, D, HALDER, S. K, KAR, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ZnO and its ternary alloy ZnMgO offer an excellent material system with potential in applications related to quantum well and photonic devices in UV and visible. ZnO and ZnO/MgO composite were prepared by solid-state mixing and sintering at high temperature in reducing atmosphere. ZnO/MgO nanocomposites up to 50% Mg content could be prepared by this method. The resultant sample was in powder form and has distribution of grain sizes. X-ray diffraction showed hexagonal ZnO structure with small signature of cubic MgO, which increased with increasing Mg content. Particle size estimated from Scherrer formula was in the range of 40 nm, which reflected the average crystallite size. Photoluminescence (PL) studies showed excitation peak around 290 nm (4.3 eV) and 350 nm (3.5 eV). Pure ZnO nanophosphor showed emission peak around 508 nm, which blue shifted with increasing Mg content. Time resolved decay of PL indicated decay time in the microsecond time scale. Optical absorption spectra showed bandgap about 5.6 eV for ZnO/MgO nanocomposite with 50% Mg content. The optical absorption measurement was done in the colloidal suspension form and it is expected that only nanoparticles of very small grain size were effectively contributing to the optical absorption process. The large bandgap could then be manifestation of quantum size effect.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2007.04.303