Loading…

Estimation of Poisson-Generalized Pareto Compound Extreme Value Distribution by Probability-Weighted Moments and Empirical Analysis

This paper puts forward a Poisson-generalized Pareto (Poisson-GP) distribution. This new form of compound extreme value distribution expands the existing application of compound extreme value distribution, and can be applied to predicting financial risk, large insurance settlement and high-grade ear...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Tianjin University 2008-02, Vol.14 (1), p.50-54
Main Author: 刘晶 史道济 吴新荣
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper puts forward a Poisson-generalized Pareto (Poisson-GP) distribution. This new form of compound extreme value distribution expands the existing application of compound extreme value distribution, and can be applied to predicting financial risk, large insurance settlement and high-grade earthquake, etc. Compared with the maximum likelihood estimation (MLE) and compound moment estimation (CME), probability-weighted moment estimation (PWME) is used to estimate the parameters of the distribution function. The specific formulas are presented. Through Monte Carlo simulation with sample sizes 10, 20, 50, 100, 1 000, it is concluded that PWME is an efficient method and it behaves steadily. The mean square errors (MSE) of estimators by PWME are much smaller than those of estimators by CME, and there is no significant difference between PWME and MLE. Finally, an example of foreign exchange rate is given. For Dollar/Pound exchange rates from 1990-01-02 to 2006-12-29, this paper formulates the distribution function of the largest loss among the investment losses exceeding a certain threshold by Poisson-GP compound extreme value distribution, and obtains predictive values at different confidence levels.
ISSN:1006-4982
1995-8196
DOI:10.1007/s12209-008-0010-1