Loading…
The evolution of the mixing rate of a simple random walk on the giant component of a random graph
In this article we present a study of the mixing time of a random walk on the largest component of a supercritical random graph, also known as the giant component. We identify local obstructions that slow down the random walk, when the average degree d is at most O($ \sqrt{\ln n} $), proving that th...
Saved in:
Published in: | Random structures & algorithms 2008-08, Vol.33 (1), p.68-86 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3 |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 68 |
container_title | Random structures & algorithms |
container_volume | 33 |
creator | Fountoulakis, N. Reed, B.A. |
description | In this article we present a study of the mixing time of a random walk on the largest component of a supercritical random graph, also known as the giant component. We identify local obstructions that slow down the random walk, when the average degree d is at most O($ \sqrt{\ln n} $), proving that the mixing time in this case is Θ((n/d)2) asymptotically almost surely. As the average degree grows these become negligible and it is the diameter of the largest component that takes over, yielding mixing time Θ(n/d) a.a.s.. We proved these results during the 2003–04 academic year. Similar results but for constant d were later proved independently by Benjamini et al. in 3. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008 |
doi_str_mv | 10.1002/rsa.20210 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33616376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33616376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3</originalsourceid><addsrcrecordid>eNp1kE9PwjAAxRejiYge_AY7mXgY9M_Y2iMSRQ3RBFETL01pO6hs62yHwLe3Y-jN03t5-b13eEFwCUEPAoD61vEeAgiCo6ADASURiiE5bnyMIkowOg3OnPsEAKQY4U7AZ0sVqm-Tr2ttytBkYe2DQm91uQgtr1UT8dDposqVD0ppinDD81Xo6QZdaF7WoTBFZUrl3R4_cAvLq-V5cJLx3KmLg3aD17vb2eg-mjyPH0bDSSRiEIMIExGnksepkglOKRZ0jgQfpIgmhGBJJQJciDmFiZwTglIyRxQASTPMpYQww93gqt2trPlaK1ezQjuh8pyXyqwdwziBfjnx4HULCmucsypjldUFtzsGAWtOZP5Etj_Rs_2W3ehc7f4H2fRl-NuI2oZ2tdr-NbhdsSTF6YC9P43Z5O1xOv7wAzf4B6SFgmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33616376</pqid></control><display><type>article</type><title>The evolution of the mixing rate of a simple random walk on the giant component of a random graph</title><source>Wiley</source><creator>Fountoulakis, N. ; Reed, B.A.</creator><creatorcontrib>Fountoulakis, N. ; Reed, B.A.</creatorcontrib><description>In this article we present a study of the mixing time of a random walk on the largest component of a supercritical random graph, also known as the giant component. We identify local obstructions that slow down the random walk, when the average degree d is at most O($ \sqrt{\ln n} $), proving that the mixing time in this case is Θ((n/d)2) asymptotically almost surely. As the average degree grows these become negligible and it is the diameter of the largest component that takes over, yielding mixing time Θ(n/d) a.a.s.. We proved these results during the 2003–04 academic year. Similar results but for constant d were later proved independently by Benjamini et al. in 3. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20210</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>giant component ; mixing time ; random graph</subject><ispartof>Random structures & algorithms, 2008-08, Vol.33 (1), p.68-86</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3</citedby><cites>FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fountoulakis, N.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><title>The evolution of the mixing rate of a simple random walk on the giant component of a random graph</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>In this article we present a study of the mixing time of a random walk on the largest component of a supercritical random graph, also known as the giant component. We identify local obstructions that slow down the random walk, when the average degree d is at most O($ \sqrt{\ln n} $), proving that the mixing time in this case is Θ((n/d)2) asymptotically almost surely. As the average degree grows these become negligible and it is the diameter of the largest component that takes over, yielding mixing time Θ(n/d) a.a.s.. We proved these results during the 2003–04 academic year. Similar results but for constant d were later proved independently by Benjamini et al. in 3. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><subject>giant component</subject><subject>mixing time</subject><subject>random graph</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwjAAxRejiYge_AY7mXgY9M_Y2iMSRQ3RBFETL01pO6hs62yHwLe3Y-jN03t5-b13eEFwCUEPAoD61vEeAgiCo6ADASURiiE5bnyMIkowOg3OnPsEAKQY4U7AZ0sVqm-Tr2ttytBkYe2DQm91uQgtr1UT8dDposqVD0ppinDD81Xo6QZdaF7WoTBFZUrl3R4_cAvLq-V5cJLx3KmLg3aD17vb2eg-mjyPH0bDSSRiEIMIExGnksepkglOKRZ0jgQfpIgmhGBJJQJciDmFiZwTglIyRxQASTPMpYQww93gqt2trPlaK1ezQjuh8pyXyqwdwziBfjnx4HULCmucsypjldUFtzsGAWtOZP5Etj_Rs_2W3ehc7f4H2fRl-NuI2oZ2tdr-NbhdsSTF6YC9P43Z5O1xOv7wAzf4B6SFgmY</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Fountoulakis, N.</creator><creator>Reed, B.A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200808</creationdate><title>The evolution of the mixing rate of a simple random walk on the giant component of a random graph</title><author>Fountoulakis, N. ; Reed, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>giant component</topic><topic>mixing time</topic><topic>random graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountoulakis, N.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountoulakis, N.</au><au>Reed, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of the mixing rate of a simple random walk on the giant component of a random graph</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2008-08</date><risdate>2008</risdate><volume>33</volume><issue>1</issue><spage>68</spage><epage>86</epage><pages>68-86</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>In this article we present a study of the mixing time of a random walk on the largest component of a supercritical random graph, also known as the giant component. We identify local obstructions that slow down the random walk, when the average degree d is at most O($ \sqrt{\ln n} $), proving that the mixing time in this case is Θ((n/d)2) asymptotically almost surely. As the average degree grows these become negligible and it is the diameter of the largest component that takes over, yielding mixing time Θ(n/d) a.a.s.. We proved these results during the 2003–04 academic year. Similar results but for constant d were later proved independently by Benjamini et al. in 3. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20210</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2008-08, Vol.33 (1), p.68-86 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_miscellaneous_33616376 |
source | Wiley |
subjects | giant component mixing time random graph |
title | The evolution of the mixing rate of a simple random walk on the giant component of a random graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20the%20mixing%20rate%20of%20a%20simple%20random%20walk%20on%20the%20giant%20component%20of%20a%20random%20graph&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Fountoulakis,%20N.&rft.date=2008-08&rft.volume=33&rft.issue=1&rft.spage=68&rft.epage=86&rft.pages=68-86&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20210&rft_dat=%3Cproquest_cross%3E33616376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4040-38c47da47ed63793c9b2ca57296883d9d20accb916db88278b2900d9f3add11f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33616376&rft_id=info:pmid/&rfr_iscdi=true |