Loading…

Extracting the significant-rare keywords for patent analysis

Brainstorming for keywords is used in retrieving patent documents, but even experienced engineers are irresolute in dealing with this critical issue. The quality of a patent report is usually already determined by the keywords they used in the first step. In order to improve the stumbling stone, thi...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2009-04, Vol.36 (3), p.5200-5204
Main Authors: Li, Yan-Ru, Wang, Leuo-Hong, Hong, Chao-Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783
cites cdi_FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783
container_end_page 5204
container_issue 3
container_start_page 5200
container_title Expert systems with applications
container_volume 36
creator Li, Yan-Ru
Wang, Leuo-Hong
Hong, Chao-Fu
description Brainstorming for keywords is used in retrieving patent documents, but even experienced engineers are irresolute in dealing with this critical issue. The quality of a patent report is usually already determined by the keywords they used in the first step. In order to improve the stumbling stone, this paper demonstrates a new method of how to find the significant-rare in a patent database. The results show that a systematic patent search (snowball-rolling-procedure) could consider the heterogeneous terms used by assignees, attorneys, and inventors that include some hidden information. Overall, the reliability of patent data can be ameliorated further.
doi_str_mv 10.1016/j.eswa.2008.06.131
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33630109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417408004296</els_id><sourcerecordid>33630109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gysSU8x46dSF1QVT6kSiwwW479XFzSpNgupf-eVGVmuW-550n3EHJLoaBAxf26wLjXRQlQFyAKyugZmdBaslzIhp2TCTSVzDmV_JJcxbgGoBJATshs8ZOCNsn3qyx9YBb9qvfOG92nPOiA2Sce9kOwMXNDyLY6YZ8y3evuEH28JhdOdxFv_u6UvD8u3ubP-fL16WX-sMwNa2TKneUAnFrdyoobDnVdMmjHFNBaRCkdbTStrWytqZyr2so1tRCGO6p5KWs2JXenv9swfO0wJrXx0WDX6R6HXVSMCQYUmrFYnoomDDEGdGob_EaHg6KgjqLUWh1FqaMoBUKNokZodoJwnPDtMahoPPYGrQ9okrKD_w__Bamgcg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33630109</pqid></control><display><type>article</type><title>Extracting the significant-rare keywords for patent analysis</title><source>Elsevier</source><creator>Li, Yan-Ru ; Wang, Leuo-Hong ; Hong, Chao-Fu</creator><creatorcontrib>Li, Yan-Ru ; Wang, Leuo-Hong ; Hong, Chao-Fu</creatorcontrib><description>Brainstorming for keywords is used in retrieving patent documents, but even experienced engineers are irresolute in dealing with this critical issue. The quality of a patent report is usually already determined by the keywords they used in the first step. In order to improve the stumbling stone, this paper demonstrates a new method of how to find the significant-rare in a patent database. The results show that a systematic patent search (snowball-rolling-procedure) could consider the heterogeneous terms used by assignees, attorneys, and inventors that include some hidden information. Overall, the reliability of patent data can be ameliorated further.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2008.06.131</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chance discovery ; Patent analysis ; Significant-rare ; Text mining</subject><ispartof>Expert systems with applications, 2009-04, Vol.36 (3), p.5200-5204</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783</citedby><cites>FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Yan-Ru</creatorcontrib><creatorcontrib>Wang, Leuo-Hong</creatorcontrib><creatorcontrib>Hong, Chao-Fu</creatorcontrib><title>Extracting the significant-rare keywords for patent analysis</title><title>Expert systems with applications</title><description>Brainstorming for keywords is used in retrieving patent documents, but even experienced engineers are irresolute in dealing with this critical issue. The quality of a patent report is usually already determined by the keywords they used in the first step. In order to improve the stumbling stone, this paper demonstrates a new method of how to find the significant-rare in a patent database. The results show that a systematic patent search (snowball-rolling-procedure) could consider the heterogeneous terms used by assignees, attorneys, and inventors that include some hidden information. Overall, the reliability of patent data can be ameliorated further.</description><subject>Chance discovery</subject><subject>Patent analysis</subject><subject>Significant-rare</subject><subject>Text mining</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gysSU8x46dSF1QVT6kSiwwW479XFzSpNgupf-eVGVmuW-550n3EHJLoaBAxf26wLjXRQlQFyAKyugZmdBaslzIhp2TCTSVzDmV_JJcxbgGoBJATshs8ZOCNsn3qyx9YBb9qvfOG92nPOiA2Sce9kOwMXNDyLY6YZ8y3evuEH28JhdOdxFv_u6UvD8u3ubP-fL16WX-sMwNa2TKneUAnFrdyoobDnVdMmjHFNBaRCkdbTStrWytqZyr2so1tRCGO6p5KWs2JXenv9swfO0wJrXx0WDX6R6HXVSMCQYUmrFYnoomDDEGdGob_EaHg6KgjqLUWh1FqaMoBUKNokZodoJwnPDtMahoPPYGrQ9okrKD_w__Bamgcg0</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Li, Yan-Ru</creator><creator>Wang, Leuo-Hong</creator><creator>Hong, Chao-Fu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Extracting the significant-rare keywords for patent analysis</title><author>Li, Yan-Ru ; Wang, Leuo-Hong ; Hong, Chao-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chance discovery</topic><topic>Patent analysis</topic><topic>Significant-rare</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan-Ru</creatorcontrib><creatorcontrib>Wang, Leuo-Hong</creatorcontrib><creatorcontrib>Hong, Chao-Fu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yan-Ru</au><au>Wang, Leuo-Hong</au><au>Hong, Chao-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting the significant-rare keywords for patent analysis</atitle><jtitle>Expert systems with applications</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>36</volume><issue>3</issue><spage>5200</spage><epage>5204</epage><pages>5200-5204</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Brainstorming for keywords is used in retrieving patent documents, but even experienced engineers are irresolute in dealing with this critical issue. The quality of a patent report is usually already determined by the keywords they used in the first step. In order to improve the stumbling stone, this paper demonstrates a new method of how to find the significant-rare in a patent database. The results show that a systematic patent search (snowball-rolling-procedure) could consider the heterogeneous terms used by assignees, attorneys, and inventors that include some hidden information. Overall, the reliability of patent data can be ameliorated further.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2008.06.131</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2009-04, Vol.36 (3), p.5200-5204
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_33630109
source Elsevier
subjects Chance discovery
Patent analysis
Significant-rare
Text mining
title Extracting the significant-rare keywords for patent analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20the%20significant-rare%20keywords%20for%20patent%20analysis&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Li,%20Yan-Ru&rft.date=2009-04-01&rft.volume=36&rft.issue=3&rft.spage=5200&rft.epage=5204&rft.pages=5200-5204&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2008.06.131&rft_dat=%3Cproquest_cross%3E33630109%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-fd40041dab754c4088230b88260bdee77f19a18d7bdc5ff5b5f9866c4f1a42783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33630109&rft_id=info:pmid/&rfr_iscdi=true